NAMING WORLDS IN MODAL AND TEMPORAL LOGIC

D. M. GABBAY AND G. MALOD

Online version — May 2000

ABSTRACT. In this paper we suggest adding to predicate modal and
temporal logic a locality predicate W which gives names to worlds (or
time points). We also study an equal time predicate D(x,y) which states
that two time points are at the same distance from the root. We pro-
vide the systems studied with complete axiomatizations and illustrate
the expressive power gained for modal logic by simulating other logics.
The completeness proofs rely on the fairly intuitive notion of a configu-
ration in order to use a proof technique similar to a Henkin completion
mixed with a tableau construction. The main elements of the complete-
ness proofs are given for each case, while purely technical results are
grouped in the appendix.

1. INTRODUCTION

It is accepted practice in classical logic to consider a fixed equality pred-
icate x = y. Equality is a fixed non-logical symbol having a fixed inter-
pretation, namely identity. First-order logic often comes with the equality
predicate and the accompanying set of axioms known as the equality ax-
ioms. Historically other fixed non-logical predicates have been introduced,
such as fixed linear orderings. The expressive power of such languages has
been extensively studied in model theory and on many occasions such fixed
predicates give the expressive power of infinitary connectives. The reason we
consider additional fixed connectives, especially equality, is their usefulness
in applications, and their widespread and fundamental nature. It makes
sense to have equality and its axioms available whenever we use classical
logic.

This paper offers similar additional predicates for modal and temporal
logic. We propose that whenever modal or temporal logics are used, these
additional predicates with their axioms should be available, just as equality
is in first-order logic.

To explain our proposal, we need to present the constant domain Kripke
semantics for modal and temporal logic. A model has the form (M, «),
M = (T, R, D, h) being a structure, where 7" is the set of possible worlds,
R is the accessibility relation, o € T is the actual world. D is a first-
order structure containing the domain D and interpretations of the functions
symbols and h is the interpretation of the predicate symbols. |= denotes the
satisfaction relation.

We are now ready to propose our additional fixed predicates and their
properties.

Keywords. hybrid logic, modal logic, nominals, predicate logic, temporal logic.
1

2 D. M. GABBAY AND G. MALOD

1. Identify the domain D of modal or temporal predicate logic with the
set T of possible worlds. !

2. Use a predicate W (z) which holds in a world « exactly when a@ =
ie.a = W) iff a ==

3. We would like to structure the set of possible worlds to be tree-like.
The tree has a root which is the actual world. This means that each
point has a distance from the actual world. We offer the equal-time
predicate D(x,y) which says that the points and y have the same
distance from the root.

This paper studies the syntax and semantics of such modal and temporal
logics, with W(z) and D(z,y), as well as their applications. Proofs of the
completeness theorems are relatively complex, but the method is of value to
other possibly more subtle and refined logics.

The predicates W (z) and D(x,y) are motivated by the following appli-
cation. Consider a temporal logic where moments of time are discrete, the
past is linear and the future is branching. Such a flow of time arises in any
system where alternative actions are available to move us from one state to
another. In this model W (z) simply names the world one is in and D(z,y)
says that 2 and y are two alternative futures, but at the same time distance
from the beginning time. We can thus compare the different states we can
be in after a given period of time, depending on the alternatives taken on
the way.

The idea of naming the worlds or time points goes back to A. Prior [10].
A first appearance of this idea with quantification can be found in [4]. This
theme has then been developed by different authors. [9] is a classic article
on this topic which introduces nominals in dynamic logic, and includes a
study of quantification over such nominals. Both [1] and [3] study a logic
enhanced with nominals, with and without quantification respectively and
in different settings. The predicate W (x) is introduced in [7].

2. PREDICATE MODAL AND TEMPORAL LOGIC

2.1. Predicate modal logic. We give here a brief definition of a predicate
modal logic. We assume it contains only one modal operator ¢, but to
introduce other operators we just need to duplicate the clauses for ¢ with
the necessary modifications. Further details about predicate modal logic
can be found for example in [8].

2.1.1. Syntax. Let S be a classical first-order signature. In other words,
S defines function symbols of various arities (with 0-ary function symbols
often called constants) and predicate symbols of various arities.

Let x1,x2,... be a countable collection of variable symbols. We then define
the set of terms as being the smallest set including all variable symbols
and such that for any terms t1,...,t, and any n-ary function symbol f it
also includes f(t1,...,t,). The closed terms are the terms where variable
symbols do not appear. The set of atomic formulas is the set of words of

the form T (the formula which is always true) or p(t1,...,t,) for an n-ary

1dentification is possible in the absence of equality because there are no axioms forcing
the set of possible worlds or the domain to be finite.

NAMING WORLDS IN MODAL AND TEMPORAL LOGIC 3

predicate symbol p and terms t1,...,t,. The set of formulas is the smallest
set which includes all atomic formulas and such that for all formulas A and
B it also includes —A, A A B, Yz A (where x is a variable symbol) and ¢ A.
We define the usual concepts of free and bound variables and substitutions;
a sentence is a formula without any free variable. We will also use the
common abbreviations L (the formula which is always false), vV, —, <, Jz
and .

2.1.2. Semantics. We define the notion of a modal structure and what it
means for a formula to be true. The domain is constant, function interpre-
tations and variable assignments are rigid, i.e. they do not depend on the
world considered. A modal structure is a 4-tuple M = (T, Ry, D, h):

e 1" is a set of time points.
e %y is a binary relation on 7.
e D is a first-order structure for the language with just the function
symbols of S; it therefore has a domain D and interpretations f :
D" — D for each function symbol f.

e K is a map such that for any predicate symbol p, and for any time point
a, h(p,a) is a subset of D".

We now have the “meaning” of functions, constants and predicates in
that structure, but we must still give values to variables before we can
decide whether a formula is true or false at a given point. This is done
via an assignment v which maps variables to values in D. This assignment
can then be naturally extended to all terms ¢ using the inductive definition:
v(f(t1,--- tn)) = f(v(t1),...,v(tn)), where f is the interpretation of f given
by D.

Let M, o, v |= A mean that the formula A holds at point « in the structure
M with the assignment v. If u and v are assignments, we write u ~ v
if Vy # z,u(y) = v(y). We now define the satisfaction of a formula by
induction:

M,a,vl= T
M,a,v = p(ty, ... t,) iff (v(t1),....v(tn)) € h(p, a)
M,a,v = —Aiff M,a,vlE A
M,a,vl= ANBiff M,a,v = A and M,a,v =B
M, o, v = VoA iff Vu X v, M,a,ul= A
M, a,v = QA iff 33 € T such that aRyS and M, 3,v |= A
If A is a sentence, it is clear that the choice of an assignment is unim-

portant, so we can write M,a |= A. We say that (M,«a) is a model of a
sentence A if M, a = A.

2.1.3. A proof system. We use the traditional Hilbert presentation of a
proof, i.e. we give axioms and rules, and a proof of a formula A from the
empty set is a sequence Aq, ..., A, such that A,, = A and each A; is an ax-
iom or is obtained from the previous A; using a deduction rule. If we have
a proof of A from () we write = A, and say that A is a theorem of our logic.
Given a set of assumptions ¢ we say that A can be deduced from ® (and we
write & = A) if there is a sequence as above where each A; is either in ® or

4 D. M. GABBAY AND G. MALOD

is a theorem or is obtained by modus ponens from two previous elements.
A formula A is said to be consistent if we cannot prove its negation (I —A).
The deduction rules are:

(MP): modus ponens, from A — B and A deduce B.
(UG): universal generalization, from A(z) deduce VzA(x).
(MG): modal generalization, from A deduce OJA.?

Here are the basic axioms:

(1): any tautology of classical propositional logic with formulas of our
language substituted for atoms.
(2): quantifier axioms of classical predicate logic:
(2a): Vz(A — B) — (A — VzB), where x is not free in A.
(2b): VxA(x) — Alt/x], where x does not appear free in the scope
of a quantifier binding a variable from t.
(3): O(A — B) —» (DA — OB).
(Barcan): VoeOA(z) — OVzA(x).

2.2. Predicate temporal logic. We have two modal operators, Or (F
stands for “in the Future”) and ¢p (P stands for “in the Past”), and use <
instead of Ry ,.. The relation Ry, is the converse of <. Syntax is defined as
in the above section, with of course the two modal operators, and we define
the semantics with the following changes:

e the relation < on T must be “linear past, branching future”, without

any cycles; (T, <) is called the flow of time.
o M,a,v = QpA iff there is 5 € T such that a < § and M, 3,v = A.
e M,a,v = QpA iff there is 5 € T such that 8 < o and M, 3,v = A.

Rule MG and axiom 3 are also duplicated for the future and past operators.
See [5] for a more detailed presentation of predicate temporal logic.

3. DISCRETE TEMPORAL LOGIC

We begin by studying the simpler case where the operators are not tran-
sitive. We therefore call them ¢ (T stands for “Tomorrow”) instead of ¢ g
and Qy (Y stands for “Yesterday”) instead of ¢ p. In this section we give an
axiomatization and show that it is complete. In following sections we will
show how we can adapt these axioms and proof to other cases.

3.1. An axiomatization. Here are the adapted basic modal rules and ax-
ioms and the axioms for the locality and same-depth predicates. In the
following, A and B are formulas, = is a variable, ¢ is a term, m,n,p, q are
positive natural numbers.

Let us first introduce the rules:

(MP): modus ponens, from A — B and A deduce B.

(UG): universal generalization, from - A(z) deduce - VzA(x).
(FG): future temporal generalization, from F A deduce + Or A.
(PG): past temporal generalization, from F A deduce - Oy A.

We will use the following axioms:

(1): any tautology of classical propositional logic with formulas of our
language substituted for atoms.

2 Again, if there are several modal operators, this rule is duplicated for each of them.

NAMING WORLDS IN MODAL AND TEMPORAL LOGIC 5

(2): quantifier axioms of classical predicate logic:
(2a): Vz(A — B) = (A — VzB), where x is not free in A.
(2b): VxA(z) — Alt/x], where x does not appear free in the scope
of a quantifier binding a variable from t.

(3Y): Dy(A — B) — (DyA — DyB).

(4T) A— DTOyA.

(4Y): A — Oy OrA.

(5): QyA — DyA.

(6): to ensure properties of the W predicate:

(6a): JxW (z).
(6b): W(x) — OV -W(x) AOL-W (z), for all n > 1.
(6c): (W(x)ANA) —OPONW (z) = A).
(6d): W(x) AW (y) — DY O(A) e Aly)).
(7): to ensure properties of the D predicate:
(Ta): O (@) A ORI (y) — CH.0%D(a.).
(7Tb): OPW (z) A OFW (y) — O O%=D(z,y), for m # n.

Axiom 5 guarantees that each node has a unique predecessor (the past is
linear). Axiom 6a ensures that each world has a name, axiom 6b that two
world on the same history will not have the same name, axiom 6¢ that two
worlds with the same name contain the same formulas (we will show that
we can then identify two such nodes in the completeness proof) and axiom
6d that if two elements of the domain are names for a single world then they
are equivalent. Note that we do not need the Barcan axiom from modal
logic, because we are in a symmetric setting (we can deduce it from axioms
4T and 4Y).

Let us note that a model where these axioms are valid is necessarily
discrete: suppose that «, 3 and = are nodes such that o < < v and a < 7.
It W(y) holds in 3, Oy W (y) holds in ~, and from axiom 5 we deduce that
Oy W (y) also holds there. Therefore W (y) holds in o. But this is impossible
because of axiom 6b.

3.2. Completeness proof. Here is the overall completeness proof strategy.
Typographical conventions in the rest of the paper: a greek lowercase letter
for a node (e.g. «), a greek uppercase letter for a set of formulas (e.g. ®), a
roman uppercase letter for a formula, very often corresponding to the node
it belongs to (e.g. A € a). In the expression above, & means both the node
and the set of formulas it contains. When we say that « is consistent, we
mean that the set of formulas contained in « is consistent.

We use a method akin to a tableau construction to build a model for a
given formula F. As we are working in a quantified setting, we need to
merge this tableau method with a Henkin type completion, so that in the
end, for a given sentence A and a world «, either A or = A holds in «.

We need an underlying structure to represent the model we are building.
Let N be the set of all positive integers. To do this construction, we consider
the set 7" = {0}*(N \ {0})*, i.e. the set of all sequences of the form: any
number of 0 followed by a finite sequence of non-zero natural numbers, as
for example (0,0,0,135,2,18). We write af8 for the concatenation of two
sequences « and (3, and ab for the sequence obtained by appending the

6 D. M. GABBAY AND G. MALOD

Qi
Or—AvUOr—-B

FIiGURE 1

number b to the sequence a. We also write aaq ---ap, where the a; are
natural numbers and p > 0; by convention, if p = 0 this expression means
«. We can define an order < on this set by having a < (iff either § = ab
where b is a non-zero natural number or @« = 05. The ordered set (T, <)
thus obtained satisfies the “linear past, branching future” property. This
set (T, <) will be the skeleton of the model we are building. We will always
be able to give a name to a node we need to build, be it in the past or in
the future.

We also use an enumeration function Fnumerate that gives us a sequence
of tuples («, A, code) where « is a node of T', A is a sentence and code is one
of the following in the case of temporal logic:

e add: add either A or —=A to the node a.

o buildQrp: (if A is of the form OB and A € «) build a new [accessible
from « containing B and W (c) for a new constant c.

o buildQy: (if A is of the form ¢y B and A € «) if a has no yesterday,
build a new yesterday node (3 containing B and W (¢) for a new constant
¢, else add A to the yesterday node of a.

e cxists: (if A is of the form JzA'(z) and A € o) add A(c) for a new
constant c.

All these actions are only to be accomplished if the node « has already
been built. A tuple (a, A, code) is said to be executable if the node a has
already been built and the preconditions (between brackets in the list above)
are satisfied. In the sequence given by Enumerate, any tuple must appear
infinitely often. At each step of our construction, we will execute a tuple if
and only if it is possible. This Enumerate function enables us to build a
sequences of finite trees with nodes containing sets of formulas. We must
make sure that the model we build does not yield a contradiction when we
start with the node denoted by the empty sequence e containing a closed
consistent formula. As we have said, we merge a Henkin completion with a
tableau construction. In traditionnal Henkin completion, we know that it is
always possible to add A or —A to our set of sentences because if A cannot
be added, then =A can be deduced and we can add —A. Here however we
add formulas to a node of a tree. Making sure that the set of formulas of
a node is consistent is not enough, because the situation shown in Figure 1
could happen, where it might be locally consistent to add A in « and B in
(3, but this is “forbidden” by the formula Or—A V Op—B in . Thus we
must have a property of “global consistency” satisfied by the tree at each

NAMING WORLDS IN MODAL AND TEMPORAL LOGIC 7

Qg A@

Q3: A3

Qg A4

(6739 A5

FIGURE 2

step. We begin by introducing path formulas. As we only build nodes when
the buildQr or buildQy codes arise, giving a successor or a predecessor to
an already existing node, it is clear that two given nodes always have a
closest common ancestor, more precisely for two nodes « and 3, there exists
v, ancestor of a and (3, such that for any 0 ancestor of a and 3, J is an
ancestor of .

Definition 3.1. Consider two nodes « and 3, and let v be their closest com-
mon ancestor. We therefore have o = yay ... a, and similarly 8 = ~b; ... b,.
We will call path formula from « to § for a formula B the formula <>€,<>‘ITB.
We write Path, gB for such a formula.

Definition 3.2. A tree is said to be globally consistent if every node is
consistent after doing any finite sequence of the following actions:

e adding the formula A to « if o+ A.
e given two nodes o and 3 and A € a, adding Pathg,A to a.

We will call such actions conservative actions. When a (finite) sequence of
conservative actions enables us to add a formula to a node, we also say that
we can add it conservatively.

Thanks to axioms 4T and 4Y, it is equivalent to allow the addition of path
formulas or the propagation of O-formulas. It is obvious that if we have a
globally consistent tree and if we perform any finite sequence of conservative
actions, then the resulting tree is still globally consistent.

In order to use a Henkin type argument we need to be able to simulate
in one node any sequence of conservative actions that could be applied to
the tree. This is the purpose of configuration formulas, which represent
in a way the structure of a finite part of the tree. We will only give here
an example of a configuration formula and the properties we need for the
completeness proof. The precise definition and proofs — which are rather
tedious despite the intuitive ideas they reflect — can be found in appendix A.
For a given number of nodes and formulas associated with these nodes, we
wish to express the presence of these formulas in the tree without losing the
information of their relative positions.

8 D. M. GABBAY AND G. MALOD

Consider for example Figure 2. It is not enough to add formula (3.1) to
v, because we lose the structure information. For example v would not then
be able to deduce Oy Or(Or A1 A OrAs). The configuration formula we are
going to use is formula (3.2).

(3.1) Oy OF AL A Oy 0T As A OF A3 A OFAs A OFAs A OrAs
(3.2) Oy Or(OrAL A OTA2) A OT(OTA3 A O Ay N OTAs) A O A
We write Conf,(aq : Ai;... ;a6 : Ag) for this configuration formula.

The main result we obtain from using configurations is the following
lemma, proved as lemma A.11 in the appendix.

Lemma 3.3. Let T be a tree, a and B two nodes and A a sentence such
that A € a. Suppose that a finite sequence of conservative actions enables us
to add B in 3. Then there is a configuration formula we can conservatively
add to a in the tree T, obtained from T by removing the formula A from
the node «, so that we can then deduce in the node o of T' the formula
A— Path,a’ﬂB.

From this we easily deduce the result we need to build our tree sequence.

Lemma 3.4. Suppose that after adding a formula A to a node a we get
a contradiction somewhere in the tree. We could then have conservatively
added —A to a in the original tree.

Proof. We have a node (3 such that we can add L to 5. But then by
Lemma 3.3 we can conservatively add A — O{.0%L in the original tree
in . But by generalization - O 0O% T, and hence we can deduce —A in
Q. (]

We will now show that each tree in the sequence we are building is globally
consistent.

Lemma 3.5. If we have an enumeration function Enumerate and a glob-
ally consistent tree T, after executing any executable tuple the resulting tree
s globally consistent.

Proof. For all the different cases of an executable tuple, we suppose that the
tree is globally consistent at that stage and show that we can execute the
tuple so that it remains globally consistent.

add: suppose that if we add A to o we get a contradiction after a finite
sequence of actions, then by Lemma 3.4 we could have deduced —A in a.
We can therefore add = A to a.

buildQr: if we build a new node § containing B and get a contradiction,
it means that there is a configuration formula relative to « in the tree with
the new node [containing B that enables us to get this contradiction.
But because the formula (7B is in « in the original tree, we can add this
configuration formula to « in the original tree, and thus we would get a
contradiction. We can therefore build § containing B. If we cannot add
W (c) there for a new constant ¢, it means by lemma 3.4 that we can deduce
-W (c) in . But then as the constant ¢ does not appear anywhere else, we
can get a proof of Vz—W (x) by Lemma A.2, but that is impossible because
of axiom 6a.

NAMING WORLDS IN MODAL AND TEMPORAL LOGIC 9

buildQy: if a already has a predecessor, then using axiom 5 we deduce
Oy B, and we can add B to that node. If it does not have a predecessor,
then we reason as above.

exists: if we cannot add A’(c) for a new constant ¢ in «, we can then
deduce Vz—A'(x) by Lemma A.2, which is incompatible with the fact that
JzA'(z) € a. O

We can now prove the completeness of these axioms.

Theorem 3.6 (Completeness). Our aziomatization is complete if we con-
sider the class of discrete linear past branching future models with locality
and same-depth predicates.

Proof. We begin the construction of our model with the formula A in the
node e. This tree is clearly globally consistent.

We then have a sequence of trees Ty,...,7T;,... which are globally consis-
tent. Call o' the set of formulas contained in the node « of tree 7;. Consider
the structure 7with a node o containing |J;~,@’. Note that for a sentence
A, either A € a or =A € «a, because there is a tree 7; where we execute the
tuple (o, A, add). Note also that in each of these nodes, any path sentence
that could be added has been added and any sentence that could be deduced
also. Indeed, if a sequence of actions could enable us to add a formula A
to a node «, then there is a tree 7; where that sequence is possible, and
the fact that all the successive trees are globally consistent means that we
cannot have added —A, therefore A € a.

As domain for our model we will take the set of closed terms of the
language considered, with all the new constants introduced, quotiented by
equality if necessary.

Let us now show that if we consider our tree as a model, a sentence A is
true at time « iff A € a. We use this property to define the truth of atomic
sentences, and show that it is true for all other sentences by induction (we
will only treat the cases of = A", A’ AN A", JzA'(z), OrA" and Oy A):

o if Ais —A’, then A is true at « iff A’ is not true at «, iff A" ¢ « iff
-A € a.

o if Ais A’ ANA", then A is true at o iff A’ is true at o and A” is true at
a,iff A" € aand A” € a, iff AANA" € a.

e if Ais JzA'(x), then:

— if A € a, we have added A’(c) for a given constant ¢ during the
construction, and by the induction hypothesis, A’'(¢) is true at a,
so that JzA(x) is true at a.

—if A ¢ o, -3z A'(z) € a, and therefore for any closed term t by
deduction —A’(t) € o and by induction hypothesis A’(f) is not true
at a, so 3z A’(x) is not true at «.

o if Ais OpA”:

— if A € a, then at some point we have built a tomorrow node [
containing A’, so that by induction hypothesis, A’ is true at 3 and
A is true at a.

— if A is true at «, then we have a tomorrow node 3 such that A’
is true at /3, hence by induction hypothesis A" € 3, and the path
formula Q7 A’ is of course in «, so that A € a.

10 D. M. GABBAY AND G. MALOD

o if Ais Oy A”:

— if A € a, then there is a yesterday node 3 for « (either because
we built it containing A" or because it was already there, in which
case it also contains the path formula ¢70y A’, and by deduction
A"), and by induction hypothesis A" is true at 3 so A is true at a.

— if A is true at «, then we have a yesterday node (3 such that A’
is true at /3, hence by induction hypothesis A" € 3, and the path
formula Oy A’ is of course in «, so that A € «.

Now suppose that there are two distinct nodes a and 3 and a constant a
such that W(a) € @ and W (a) € . Then using the axiom 6¢ we can prove
that the nodes v and (3 contain the same formulas. Being distinct and not
on the same history due to axiom 6b, o and [each have a yesterday node
each, call these o/ and (3. Then if A’ € o/, we have the path formula vy A’
in o and hence in (3. But we also have Oy A" in 3 by axiom 1, and then the
path formula O70y A’ in #/, and by deduction A" € 3. We can thus prove
that the nodes o and (3 contain the same formulas. We can reason in this
manner until we reach the closest common ancestor v of @ and 5. « and 3
were necessarily of same depth, else we would have two points on the same
history with the same name, which is forbidden by axiom 6b. We therefore
identify pairwise a and £ and all their ancestors up to . In the tree we now
have, two different nodes have different “names”. Axiom 6d ensures that if
two constants name one world, then they satisfy the same formulas.

Suppose finally that two worlds a and 3, named by the constants a and
b, have the same depth. Consider v their closest common ancestor. There
exists n such that the formulas O2.W (a) and ¢} W (b) are in . The formula
D(a,b) is therefore in all worlds. If on the other hand o and /3 have different
depths, there exists m # n such that the formulas "W (a) and ¢} W (a)
are in y. The formula =D(a, b) is therefore in all worlds.

We have not ensured that there is a one to one correspondence between
the domain and the set of worlds. If a world has several names (if W (a)
and W (b) hold), we know thanks to axiom 6d that a and b satisfy the same
formulas, so we can define an equivalence relation on the domain and factor
those elements out. If we have a countably infinite number of worlds, we
have a countably infinite number of elements, and this can be obtained by
using a bijective application between the two sets to rename worlds. We
will not worry too much in this section about this problem, because it will
disappear in the transitive case. O

The construction above was started with node e containing a single consis-
tent formula. But we can do the same construction starting with a consistent
theory ® in node €, because even if we do not have a finite structure at each
step anymore, at each step we have only added a finite number of nodes
containing a finite number of formulas to the original tree € : ®. We can
therefore always find a new constant ¢ when we need one. As before, con-
tradictions in the tree involve a finite number of nodes and a finite number
of formulas, so our reasoning is still valid. The main difference is that be-
fore, a configuration formula could represent the whole tree, and we could
deduce everything we could have deduced in the tree from this one formula,
whereas now we cannot represent the whole tree with one formula. But we

NAMING WORLDS IN MODAL AND TEMPORAL LOGIC 11

do not use this fact in our completeness proof. We thus obtain at no ex-
tra cost completeness for a consistent theory. This is also true of the other
completeness results in this article.

4. OTHER LOGICS

4.1. Transitive temporal logic. We again use two temporal operators ¢
and O p, but they are transitive this time.

4.1.1. The axioms. We keep the rules (MP, UG, FG, PG), and basic axioms
(1 to 4) from the preceding section (4T and 4Y are adapted and renamed
4F and 4P), and add the following:

(5’): OpANOPB — QP(A VAN B) V <>P(A VAN <>PB) V <>P(<>PA VAN B)

(TransF): to express the transitivity of Rp,: OpA — OpOrpA.

(TransP): to express the transitivity of Rg,: OpA — OpOpA.

(67): to ensure properties of the W predicate:

(6a’): JzW(x).

(6b°): W(z) —» Op—~W(z) AOQp—-W(z)

(6¢c’): (W(x)ANA)— OpOp(W(z) - A) AOp(W(z) - A)
AOp(W(z) = A).

(6d°): W(z) ANW(y) = Op0Op(A(z) < A(y)) ANOr(A(z) < A(y)) A
Op(A(z) < A(y)) A (Alz) < A(y)).

(6€’): Ya(W(x) VvV OpOrW(x)V OpW (x)V OpW(x))

Note that we now have access to all the worlds without using an infinite
number of axioms, thanks to Op and Or. Axiom 6e’ for instance ensures
that all elements of the domain are the name of a world somewhere.

We have not yet included axioms for the same-depth predicate, because
such a predicate relies on tomorrow and yesterday nodes. We will neverthe-
less be able to add it due to the expressive power of the combined transitive
operators and locality predicate.

4.1.2. The Since and Until operators. The operators Since (S) and Until
(U) have the following meaning: S(A, B) is true iff there is a time point in
the past where A was true and B was true between that point and now; the
converse condition holds for U(A, B).
Formally, their satisfaction conditions are:
e M,a,v E=U(A,B) iff 3 g such that « < 5, M, 3,v = A and for all ~,
if « <y < 3, then M,~,v E B.
e M,a,v |E S(A, B) ift 3 8 such that 8 < o, M, 3, v |= A and for all ~,
if 5 <~ < «, then M,~,v E B.

Now define U (A, B) as the formula of our language:
Az (Op(W(x) NA) AOp(OpW(x) — B)).

This expresses the fact that there is a point 3 in the future where A holds
and for any point in the future of now, if it is in the past of 8 then B holds.
We get the converse definition for the S(A, B):

3o (Op(W(x) A A) ADp(OpW (z) — B)).

12 D. M. GABBAY AND G. MALOD

4.1.3. O7 and Oy operators. Now that we have the operators Since and Until
we can use their expressive power to define the O and {y operators we used
in the first logic we defined. Indeed, we have the following definitions:

OrA=U(A, 1)

OyA=U(A, 1)
U(A, 1) states that there is a point in the future where A holds and L
holds at any intermediary point. But L cannot hold anywhere, hence there

are no intermediary points. A holds in an immediate successor of the current
node, i.e. its tomorrow node. Let us write the precise expression of {1 and
Oy
OrA=3x(Op(W(z) N A) AN -OpOrW (z))
OvA=3x(Op(W(x) NA)A=OpOpW (x))

It is interesting to note that these formulas express that there is a point
in the future (respectively the past) that cannot be reached in two steps,
but only in one step, where A holds. In other words it means that a node
is a tomorrow (respectively yesterday) node for another if it is in its future
(respectively past) and there is no node in-between. We will now show that
the operators we obtain behave as we expect them to.

Lemma 4.1. Using the proposed axioms we obtain:
FOyA—OyA
FOr(A — B) — (OpA — OrB)
FOy(A— B) = (OyA — OyB)
FA— OrOvA
FA—OyOrA
Proof. Let us prove that Oy A A Oy B — Oy (A A B). We will then deduce
our first axiom by taking B = —A. If we have Oy A A Oy B, we have (4.1).
(4.1) FzAy(Op(W(x) NA) A =OpOpW (x)
ANOp(W(y) A B) A=0pOpW(y))
Using axiom 5’ on Op(W(z) AA)AOp (W (y) A B) we would get a disjunction
of three different formulas, but =¢pOpW(x) A =0pOpW (y) prohibits two
of these, and we finally get (4.2).
(4.2) FaFy(Op(ANB AW (z) AW (y))
AN=0pOpW (z) A =0pOpPW (y))

From this we can deduce ¢y (A A B).

Let us now show the second axiom. Suppose we have Op(A — B) and
OrA. Then we have (4.3), and from it we can deduce (4.4), which is exactly
the formula we wanted.

(4.3) Ve(QpOrW(z) V (Op(W(z) = A) AQp(W(z) — (A — B))))

(4.4) Va(OpOrW (x) V (Or(W(x) — B)))

The third axiom is similar.

NAMING WORLDS IN MODAL AND TEMPORAL LOGIC 13

as

Qg

Qs

FIGURE 3

Let us show the fourth axiom. We will show the converse formula, i.e.

Ordy A — A. OOy A is formula (4.5).

(4.5) 3z(Or(W(x) AVy(OrOrpW (y) VOp(W(y) — A)))
A=0pQrW(z))

Using axiom 6a’, we know that 32W(z). We can use the Vz in the original
formula and substitute = by z. We finally get formula (4.6).

(4.6) FxIz(Op(W(z) A (OpOpW(2) vOp(W(z) = A)))
A _‘<>F<>FW(-T) AN W(Z))

From W(z) A =0rpQrW (xz) we deduce via axiom 6¢’ OpOpOp(W(z) —
Op0p-W(x)). We can use this to “bring in” W(z) — OpOp-W (z) with
W(z) in (OpOpW(z) VOp(W(z) = A).
From this we deduce (O pOpOp0p-W (xz)vOp(W(z) — A), and then using
axiom 4P, we get Op(W(z) — A). If we replace all this in context, using
axiom 4F we deduce W(z) AW (z) — A, and then A.

The fifth axiom is similar. O

4.1.4. The same-depth predicate. Having added tomorrow and yesterday op-
erators, we can remember the same-depth predicate which we had defined
in our first system where we only had ¢7 and ¢y. Let us add to the axioms
of section 4 the following:

(7a’): OLW (x) NORW (y) — D(x,y), for all n.

(Tb): OFW (x) A OEW (y) — =D(x,y), for all m # n.

(7¢’): D(z,y) — OpD(x,y) NOpD(z,y) NOpOpD(x,y)

Note that with the axioms from 4.1.1 we do not force the model to have a
(transitive) accessibility relation which is the transitive closure of a discrete
accessibility relation. Indeed we could have a node « such that for all 5 > «
there exists a node v which is in-between (o < v <). In that case, the
node « has no tomorrow node. The same-depth axioms we have introduced
link nodes that have the same discrete depth from a given node. Consider
for example Figure 3. v and 3 have same depth, a3, ay and as have same
depth, ag, a1 and as have same depth, but o does not have the same depth
as ag or ay, because of the gap between v and 3. If we wished to consider

14 D. M. GABBAY AND G. MALOD

discretely based models, we could add the following axioms (and similar
ones for the past):
(Discrete): W(z) A OpW(y) — 3z00(W(2) ANOrW (y)) V OrW (y)
(Induction): W(z) — Yy(OrA(n(z,y)) A
Vz(OrW(y) N A(z) = OpA(n(z,y))) — OrA(y))

In these axioms, n(z, y) is the (unique) next time point after = on the history
that leads to y. We need not introduce a new function symbol for it, because
the relation z = n(z,y) can be defined using an expression akin to the
Discrete axiom. These axioms do not force the model to be discrete, but
they ensure that such a discrete model exists.

If we do not wish to restrict ourselves to discrete models, the above axioms
might not be precise enough. Indeed, in a model of these axioms with the
structure of Figure 3, the D predicate could very well state that « and 3
have same depth, although one is separated from the root by a gap while
the other is not. We can fortunately add axioms to ensure a more sensible
behaviour for D. We say that there is there a gap between two nodes «
and 3 (o < () if there is an infinite number of nodes between them. We
therefore know that we have two sequences («;) and (3;) of nodes such that:

a<a < <o < << <y S B

If one of these sequences converges towards a node of the model (i.e. for
instance Iy ¥y < 70, Ji v < a; <), then there is a point between a and
[which has no tomorrow node or no yesterday node on the history between
a and (3. We call such a gap a simple gap. Define sgap(y) as the following
formula:

(4.7) =0r0rW (y) V =0pdrW(y)
VOrR(QrW (y) A=010rW (y) A ~0rW(y))
VOrR(OFW (y) A =0y OrW (y))

This formula is true in a world of name x iff has no tomorrow node leading
to y, or y has no yesterday node coming from z, or there is a node between z
and y which has no tomorrow node leading to y, or there is a node between
x and y which has no yesterday node coming from .

We add the following axiom:

(7d’): OrW (y) AOrW (2) AOp(=0rW(y) V =0rW (2))
A (sgap(y) V sgap(z)) — =D(y, z).
(7e’): Or(W(x) A Oy W (x0)) A Or(W(y) A Oy W (yo)) A D(z,y)
— D(z0, y0)-
(7£): W(x) NOW (y) = ~D(z,y).
The first one says that if = is the closest common ancestor of y and z and
there is a simple gap between x and y or x and z, then x and y do not have
same depth. The second one says if two nodes have same depth and each
has a yesterday node, then those two yesterday nodes have same depth.

4.1.5. Completeness proof. To use the completeness proof of the previous

case, we need to adapt the parts where we used axiom 5, because it has

been replaced by axiom 5. The following lemma, proved in appendix B as

NAMING WORLDS IN MODAL AND TEMPORAL LOGIC 15

lemma B.1, is a generalized version of axiom 5’, will allow us to build nodes
in the past.

Lemma 4.2. Let og,..., an be nodes, ®q,..., ®,, finite sets of formulas

such that ay, < -+ < a1 < aq then:
F OpBAConfa(ar: ®1;... 50, D)

— \/ Confae(...;0;: ®;U{B};...)
1<i<n

\Y \/ Confao(B: Biar: ®1;...50, 1 Op)

1<i<n
a; <fB<ai—1
where 3 is a new node

V Confo(ar: ®1;...ian_1: P10y 1 @, U{OpB}).

The configuration and simulation lemmas still work. In Lemma 3.5, when
we build a past node to satisfy a ¢ pB formula, we use our new Lemima 4.2
instead of axiom (5). Finally, we need to make sure that (7, <) is an accept-
able transitive time flow. Its transitive property is due to axioms (TransF)
and (TransP). The problem is that we have identified nodes, and we cannot
use axiom (5) anymore to identify all their ancestors. Instead, we need to
make sure that we can indeed identify two given nodes. with same names.

Lemma 4.3. Suppose we have nodes «y, ...,y and Bi,...,0B, such that
ap <y < <y and ag < P < -+ < B, and for an element a, W(a)
holds both in «y,, and (3.

Ifm > 2 andn > 2, there exist i and j and an element b such that 1 < i <m
and 1 < j <n and W(b) holds in both a; and [3;.

Proof. We know that a,, and 3, contain the same formulas. Moreover,
there exists an element b such that W (b) holds in 3,_1. We therefore have
OpW(b) in B, and in ay,. From our construction, we now know that W (b)
holds in a node in the past of au,. It cannot be in g or in the past of
ap, because those nodes are on the same history as (3,—1 and axiom (6b’)
prohibits two nodes of the same history from having the same name. We
therefore obtain the desired node «;. O

Now using this lemma, we can identify nodes until we have either m =1
or n = 1, and the resulting structure will yield an acceptable time flow.

The last point is to use our additionnal same-depth axioms to show prop-
erties of the D predicate. Thanks to the original axioms, inside a maximal
discrete subtree the D predicate links nodes as expected. Thanks to axiom
7d’, Two such subtrees separated by a simple gap have no elements of same
depth. The last case is that of a gap which is not a simple gap. Let a be
a node on a maximal discrete subtree and $ a node from an other discrete
subtree. Let v be the closest common ancestor of « and 3. Suppose that
there at least one non simple gap between v and « (and no simple gaps,
because if there was one, a and (3 would be cleanly separated and it would
be over). Suppose that D(a,b) holds, where a and b are names for o and £3.
There cannot be a simple gap between v and (3, because then with axiom
7d” we would have =D(a,b). Suppose there is no gap. Then there is a finite

16 D. M. GABBAY AND G. MALOD

number of nodes between v and 3. On the other hand, we can form a chain
of yesterday nodes starting from a as long as we wish, because of the non
simple gap. Thus at some point we would obtain using axiom 7e’ that ~
and some node between v and « have same depth, which is impossible. In
the model we obtain, D behaves as expected inside a discrete subtree, dis-
tinguishes discrete subtrees which are separated by simple gaps. It might
however link discrete subtrees who are both separated from their closest
common ancestor by a non simple gap.

We can now state our completeness result (we here get a one to one
correspondence between worlds and elements).

Theorem 4.4. Our axiomatization is complete for the class of all transitive
linear past branching future models with locality and same depth predicate.

4.2. Modal logic. In a modal setting, there is no notion of linear past,
therefore one of the main differences between the two cases in temporal logic
disappears. Many results will therefore be valid whether we are dealing with
the transitive case or the non-transitive case.

We use exactly the logic defined in section 2, which is the usual definition
of syntax and semantics. Note that we now use the Barcan formula.

We begin by giving axioms for the locality predicate, and then introduce
axioms for the same-depth predicate.

4.2.1. The axioms and rules. In the transitive case, we can define an oper-
ator 01A (1 stands for one step) similarly to O in the previous section as
O (W (z) AN A) A =QOW ().

We keep the basic rules and axioms, and add the following:

e in the non-transitive case:

(2a”): JzW(z).
(2¢”): W(z)NA - O"(W(x) — A), for all n.
(2d7): O"(W(x) AW(y)) = O™ (A(z) < A(y)), for all m,n
(2€”): O"W(x) — O™=W (x), for m # n.
(27): O"(AANQO™W (x)) — O (O™W (z) = A).
e in the transitive case:
(Trans): OA — OOA.
(2a”): JaW(x).
(2¢”): W(z)NA = OW(x) = A).
(2d7): (W(z) A W(y)) vV OW(x) A W(y)) — (Alz) < Ay)) A
O(A(z) & A(y)).
(2€”): OYW(x) — OP"-W (x), for m # n.
(2£7): OP(AAOTW (x)) — OP(OT'W (z) — A).
(2g”): W(z) — O-W(z).

Note that even in the transitive case we lose the ability to access the
whole tableau from an arbitrary node, we therefore have no equivalent of
axiom (7°), which ensured that any element of the domain was the name
of a world.> We solve this problem by building a model of F' A VzOW (z)
(or @ U{VxOW (x)} in the case of a theory) in the transitive case, instead

3In essence, the usefulness of having access to all the worlds is linked to the notion of a
universal modality; for instance, such a modality greatly simplifies the completeness proof
in [3].

NAMING WORLDS IN MODAL AND TEMPORAL LOGIC 17

of building a model of just F', because the model we build starts from this
node, thus for all z, there will be a world named by z.

For the same-depth predicate, we add the following in both cases:

(Ta”): OFW(z) A QYW (y) — D(z,y).

(Tb”): OTW (x) A QYW (y) — =D(w.y), for m # n.

(7¢”): D(x,y) VOD(z,y) = D(x,y) ANOD(z,y).

We also need to add axioms in the transitive case, which are similar to
the temporal case:

(7d*): OW (y) ANOW (2) AD(=OW (y) V ~OW (2)) A (sgap(y) V sgap(z)) —

-D(y, z).
(7€’): O(W(wo) A O1W () AO(W (o) A O1W (y)) A D(w,y) — D(xo. yo)-

In these axioms, sgap is the adaptation of the formula defined in the
temporal transitive case.

4.2.2. Completeness proof. We will start by adapting the notions we have
developed for temporal logic in the modal case.

This is an obvious statement, but a node can only access nodes to which
it is linked by the accessibility relation. In a certain sense, it is as if we
were in a temporal logic, but with only future operators. A node can only
access its successors. This means that a configuration from a point v to
nodes ay,...,q, is only possible if all the nodes are successors, where (3
is a successor of « iff there are nodes ag,...,a,, (n > 1) such that o =
ap < -+ < a, = 3. Similarly, a path formula Path, gB is only possible if
[is a successor of a. We modify our definitions of path and configuration
formulas accordingly in a straightforward way.

Because a configuration can only access the successors of its base point,
we will reason in the root € of our tree during the construction. Indeed, the
root is the only node that can “see” all the information which is in the tree.
We could not have done this in the case of temporal logic because we could
build nodes in the past. The set we now consider as a skeleton is just the set
of sequences of natural numbers, on which we define the usual order to get
a tree where each node may have an infinite number of sons, but of course
only one father.

We also need to modify the notion of global consistency. It is no longer
equivalent to allow the propagation of [-formulas and the adding of path
formulas. Recall Figure 1: if we just allow the propagation of O-formulas,
we can still add A in « and B in .

Definition 4.5. A tree is said to be globally consistent if every node is
consistent after doing any finite sequence of the following actions:

e adding the formula A to « if a - A.

e given two nodes a and (such that (3 is a successor of a and A € a,
adding Pathg A to a.

e given two nodes a and [such that (§ is a successor of @ and 0" € «,
adding A to .

Our configurations can be seen as a special case of the configurations
defined in the temporal section. But we must make sure for each lemma
that we are not using axioms that are strictly temporal (namely the fact

18 D. M. GABBAY AND G. MALOD

that we have operators to access the past and future and that they are the
converse of each other).

We used temporal axioms to prove that we could add path formulas. We
will therefore need to prove this result again. Moreover, in the temporal
case, we did not propagate O-formulas because it was equivalent to add
path formulas, but as we have seen it is now necessary. The necessary new
results are proved in appendix C.

Finally, we need to prove the following lemma (see lemma C.6 in the
appendix) because we will only be reasoning in the root € of the tree. In the
temporal case, when we wanted to show that we could add A(c) for a new
constant ¢, we would just use the classical result (Lemma A.2). But we now
need to adapt this result so that we can use it from e.

Lemma 4.6. Let T be a tree and « be a node in T. Let D and A(x) be
formulas, where x is free in A. Suppose we can conservatively add to «
Alc/z] for a new constant c. Then there exists a variable w, a finite set
of formulas ® contained in o and there are nodes ai,...,q, in the tree,
containing finite sets of formulas ®1,...,®, such that:

FConfe(a: ®U{D};ay: ;.. .5ap : $n) = Pathe oD ANVwAlw/x).

If we now follow the same proof pattern, we just need to make a few
comments. The code buildQy no longer exists, and build(Qr becomes build?.
An adapted Lemma 3.5 still holds, because of the lemmas we have just
shown. We are showing completeness for the class of all connected sets of
worlds (or all transitive connected sets of worlds), therefore we can identify
nodes without any anxiety.

In the non-transitive case, we do not ensure that any element of the
domain is the name of a world, and the same remarks apply when we have
an infinite countable number of worlds.

In the transitive case, we can once again solve this problem by building
a model of the formula F' A Va(W (x) V OW (x)), instead of just building a
model for F.

Once we have built a model, we use axioms 2e”, 2f”, 2g” to identify
worlds and ensure that two different worlds do not share the same name.
The argument for the same-depth predicate is similar here, and we obtain
the same kind of properties.

Theorem 4.7. Our axiomatizations are respectively complete for the class
of all discrete models with locality predicate and the class of all transitive
models with locality predicate and same-depth predicate.

5. SIMULATING OTHER LOGICS: HYBRID LOGICS

The hybrid logics of Blackburn and Tzakova [2] are propositional logics
with additional variables and constants that are used to name worlds, and
quantifiers that bind these state variables. We will describe briefly these
logics and show how they can be simulated using our transitive modal logic
with locality predicate.

NAMING WORLDS IN MODAL AND TEMPORAL LOGIC 19

5.1. A brief outline of syntax and semantics. Two hybrid logics are
defined: £(B) with B € {V,]}. These are basically propositional languages,
where the atomic symbols are sorted in three sets, assumed to be disjoint:
PROP (the usual propositional symbols), SVAR (the state variables) and
NOM (the state nominals). The well-formed formulas of £(B) are built
inductively from the atomic symbols with the connectives —, A, the operator
[0 and the quantifier B which binds the state variables of a formula.

The semantics are defined for a model M which is a triple (S, R, V'), such
that S is a non-empty set, R is a binary relation on S, and V : PROP U
NOM — Pow(S). Only standard valuations are considered, i.e. which map
any nominal to a singleton subset of S. An assignment is a mapping g :
SVAR — Pow(S). There is again a restriction to standard assignments, i.e.
which map a state variable to a singleton subset of S. Let [V, g](a) = g(a)
if a is a state variable and V'(a) otherwise. The satisfaction condition for
atoms is M, g,s |= a iff s € [V, g](a). Satisfaction is defined in the usual
way for =, A, 0. The satisfaction of V and | is defined thus:

M,g.s =V ifffor all ¢ ~ g, M,d s = ¢
M, g,s =L x¢ iff for all ¢’ X g, such that ¢'(z) =5, M,d,s |= ¢.

5.2. Translation.

5.2.1. Structures. Let M = (S, R, V) be a model, we define a model M* =
(T, Ry, D, h) of our logic by taking T' = S, our domain is D = S, Ry = R,
h is defined for the propositional symbols p (i.e. the 0-ary predicates in
our language) in a natural way, D contains the interpretations V(i) of the
nominals (which are constants in our language). We interpret the predicate
W in the following way: h(W,s) = {s}.

Let g be an assignment, it is therefore defined on the set of state variables,
which will be our set of variables, and maps them to worlds in the set S
which is also our domain, so we define an assignment for our language:

g =g

5.2.2. Formulas. We now define for all formulas of £(V) a translation to a

formula of our language. We translate O to O, which is transitive, but if we
want to simulate a discrete logic we just translate O to the discrete operator
we can define using [in our logic and the locality predicate. The definition
is by induction on its structure:

[p]* = p, where p € PROP
[y]* = W(y), where y € SVAR
[i{]* = W(i), where i € NOM

(=" = —lof"
[@APT" = [o]" A [9]*
[C¢l" = Dfgl*

[Vag]" = Valg]"

Note that we do not define a translation for |, although it would be
possible, because it can be defined using V: | z¢ = Jz(z A ¢).

20 D. M. GABBAY AND G. MALOD

5.2.3. Faithfulness of the translation. We show by induction that for all
formulas ¢ of L(V), M, g,s = ¢ iff M*, g*, s = [p]*:

o if ¢ is atomic:

— if it is a propositional symbol p, its translation is p, and the result
is clear because we have the same set of worlds and the same
extensions for propositional symbols.

— if it is a nominal i, M, g, s =i iff s = V(i); its translation is W (),
and M*, g*, s = W(i) iff s = V(i), because of the interpretation
of the constant ¢ and of the predicate W.

— if it is a state variable y, M, g, s | y iff s = g(y); its translation is
W(y), and M*, g*,s = W(y) iff s = g(y), because of the definition
of g* and of the interpretation of the predicate W.

e the cases for -, A, are straightforward.
e if it is of the form Vap, M.g,s |= Voo iff Vg'(g ~ g = M. d,s = 9,
ifft M*, g*, s |= [Vab]*, because we have defined ¢g* = g.

6. FURTHER DEVELOPMENTS

6.1. Geographical predicates. The same-depth predicate that we have
defined is an example of the “geographical” predicates we can define once
we have the locality predicate. If we observe the proofs we have done, the
tools introduced are used to enable us to build a model with the locality
predicate W. The axioms for D are just used to check that it has the
desired properties. To define other predicates based on distance between
nodes, one need just find an adequate set of axioms.

Let us for example consider the case of transitive temporal logic and define
a countable number of predicates (d,,(z))n: their intended meaning is that
x has depth n from the root. Consider the following axioms:

(Dl): Oy T A W(:Z’) — do(T)

(D2): dy(x) A\W(x) A OrW (y) = dnti(y).

(D3): dp(x) A\W(x) ANOyW(y) = dn—1(y), for n > 1.
(D4): do(z) A\W(x) — =0y T.

This works well in a discretely based model. If there are gaps, only
maximal discrete subtrees containing a root will have elements satisfaying a
given d,,.

6.2. Structured constants and substructural logics. Because we are
building the model “by hand”, we have a certain amount of control over what
we are adding. Consider the skeleton model we use for our construction; we
could use it as a basis to add structured constants as names of worlds. The
name of a node would give information on its place in the model. This would
in turn enable us to simulate other logics such as substructural logics. In
such a logic there is a different satisfaction condition for —-:

M,a,v = A— Biff for all 5, M,3,v = A implies M,a* (,v |= B.

x 1s the concatenation function. Our structure on names would allow us to
express such a condition.

NAMING WORLDS IN MODAL AND TEMPORAL LOGIC 21

6.3. Simulating other logics and defining new operators. As we have
seen the expressive power of a transitive operator with the locality predi-
cate enables us to define the Since and Until operators. We could define
some other operators. Consider for instance the LDS (Labelled Deductive
Systems) presentation of temporal logic. It is used to define new bounded
operators G*A and H* A, where G*A means that for all nodes in the fu-
ture between now and a point labelled z, A holds. If we also allow labelled
operators we can define them: G*A = U(W (z), A).

We should also be able to simulate the LDS presentation of temporal logic
within our framework, because we can represent a configuration with our
configuration formulas. Details about LDS can be found in [6].

CONCLUSION

We have introduced a locality predicate W in modal and temporal logic
and given axioms to ensure its properties. As we have seen with the logic
simulation and the other possible applications, it gives rise to powerful log-
ics. We have noticed that it was then quite simple to define a same-depth
predicate. The expressive power gained can also be illustrated by simulat-
ing other logics. There are many possible applications which have been but
sketched. If we consider a given logic and a model of a given sentence, we
can add new names to worlds, we then obtain a consistent theory, which
has a model, where we can give different names to the new worlds. By it-
erating this process we obtain a model where all worlds have a name. Here
instead we have built the models from a given axiomatization. We get a set
of axioms and we can retain this construction to get further results, such as
adding structured constants to name the worlds, because of the control we
keep in the process.

22 D. M. GABBAY AND G. MALOD

APPENDIX A. TECHNICAL LEMMAS FOR THE DISCRETE TEMPORAL CASE

Let us first prove two classical results about proofs that we will be using
quite often implicitly.

Lemma A.1. Let ® be a set of formulas, F and G formulas, if PU{F'} F G,
then @+ F — G.

Proof. Let (G, ...,Gy) be a proof of G in ® U{F'}, we will build a proof of
F — G in ® by inserting some formulas in the sequence (F — Go, ..., F —
G,) so that it becomes a proof.

If G; is a tautology, so is F' — G;.

If GG; is an axiom or belongs to @, insert between F' — G;—1 and F — G;
(or simply put before ' — Gy if i = 0) the formulas G; and G; — (F —
G;) (a tautology). If G; is obtained by (MP), then we have j,k < i with
G = G; — G;. We insert between F' — G;—1 and F' — G; the formulas

(F = Gj) = (F = (Gj = Gi) = (F—=Gy) and (F = (G — Gy)) =

If G; was obtained by generalization, then - ; and we insert the tautology
Gi — (F = G;). O

Lemma A.2. Let ® be a set of formulas, F(x) a formula and ¢ a constant
not appearing in ® nor F. If ® - Flc/z], then there exists a variable w such
that ® - VwF[w/z].

Proof. We therefore have A\,.,., Fi & Flc/x], where F; € ®. Using the
previous lemma we obtain - A, ..., F; — F[c/z]. Let w be a variable not
appearing in any of the F; or in F. If we replace the symbol ¢ by w, we get
F Aj<icn Fi = Flw/z]. By generalization and using axiom 2a, we deduce
F Ajcicn Fi = YwF[w/z], and then @ - VwF[w/z]. O

A.1. The configuration lemmas. We give here the precise definition of
a configuration formula and prove basic properties.

Lemma A.3. Let a, B and ~y be three nodes such that the paths from « to
B and « to vy have only o as a common point. Then the following formula
can be deduced from the axioms:

Pathe 3B A Patha,C — Patha g(B A Pathg,C).

Proof. This is straightforward by case analysis on the possible positions of
a, # and 7, and using axioms 4T and 4Y.]

We can now give a formal definition of a configuration formula.

Definition A.4. Let «q,..., an and v be nodes, @4, ..., ®,, finite sets of

formulas, Con fy (a1 : ®1:... 0y : @,,) is defined by induction on n:

e if n = 0 by convention Conf.(0) is T.

o if n=11let Conf, (a1 : ®1) = Pathy o, Npeo, F-

o if n > 2, let B be the closest node to «a, on the path from ~ to
an that also belongs to a path leading from v to an «;; let J C
{1,...,n — 1} be such that j € J iff o is in the future of 3; then
let Confy(ar: @15...:05 : ®p) be the formula:

NAMING WORLDS IN MODAL AND TEMPORAL LOGIC 23

Qg: A@ . A3

Fi1GURE 4

Conf,(aj: @5 ¢ JU{n};

B:{(Pathga, [\ F)AConfsla;:®;.5€.J)}).
Fed,

We call n the degree of the formula.

If ®; = {F;}, we will write Conf,(...;; : Fy;...) instead of the correct
Confy(...;0; : {F;};...). From now on, we will also often write Path, 3®
when ® is a finite set of formulas instead of Patha g /\ pcg F'- Tn the previous
definition, the set .J is non-empty and contains at most n— 1 nodes, therefore
the configuration formulas used are indeed defined. When we write (o, :

..) in the inductive definition of the configuration formula, we mean the
configuration with the sequence of nodes whose indices are not in JU{n} in
the order given by the original sequence a1, ..., a,, so that we get a unique
formula in the definition. As we will see with Lemma A.6, the order in which
the nodes are stated does not affect the meaning of the formula and from
then on we shall consider any permutation as the configuration formula. We
assume the same writing precautions in the proof of Lemma A.5 below.

As we want to use configuration formulas to simulate conservative actions,
the least we can expect is that if we can deduce a formula from the formulas
in a node, then we can deduce the resulting configuration formula from the
original one. Consider for example Figure 4, we can deduce B in node aa,
therefore we want to be able to deduce Confy (a1 : Ai,a0: B, ..., a5 : Ag)
if we suppose the hypothesis Conf, (a1 : Aj, a0 : {A, A= B}, ..., a6 As).
Lemma A.5. Let ay,...,a, and v be nodes, ®1,...,P,, finite sets of for-
mulas, such that ®; F G, then we have:

FConfy(ar: @15 0 : Py 0 Py
— Confy(ar: P15...505 : Gyooiay, 0 D).

24 D. M. GABBAY AND G. MALOD

Proof. If ®; = G, then using Lemma A.1, we get = Apcg ' — G. We
therefore just need to show that if we have - /\Fe<b¢ F — G, then

FConfy(ar: @0 @y, 0 @)

= Confylar: P15...505 1 Gyooiay, 0 9y).
The proof is achieved by induction on the degree n of the formula.
Casen = 1. The configuration formula is Path, o, ®1, and because for ¢ €

{01, 0y} we can deduce - OF — QG from F F — G, it is straightforward
to show:

F (Pathy,q, ®1) = Pathy o, G.
Case n > 2. We use the inductive definition of the configuration formula
Confy(...;0; 1 ®;:...), which is formula (A.1).
(A1) Confy(aj:®j,5¢&J:8:Confgla;:®j.j€J)APathgq,Pn)
If ¢ ¢ J, then we can use the induction hypothesis on this configuration
formula which is of a smaller degree. If i € .J, then we first get formula (A.2)

by induction hypothesis. We show the desired result by another application
of the induction hypothesis.

(A.2) F Confalaj: ®,5 € J) = Confslaj: @55 € J\{i};a;: G)
If i = n, then we have as in the case n = 1:
F (Pathg q, ®n) = Pathg, G.

We then deduce formula (A.3) and use once more the induction hypothesis
to end the proof.

(A.3) F (Pathga, ®n) NConfsla;: ®;,5 € J)
— (Pathga, G) N Confgloj: @, € J)
Il

We now prove what we claimed just before: the order of the nodes is of
no consequence. It means that we can “build” the configuration using the
inductive case of the definition taking any of the nodes as the last node, the
one which is a reference.

Lemma A.6. Let o be a permutation of {1,...,n}, then we have:

FConfy(ar: ®1;...;0p 0 Oy)
— CO?l.fA/(ag(l) : (I)a(l); <3 Qg(p) t (I)U(n)),
for all nodes a1, ...,an and v and finite sets of formulas ®1,...,P,.

Proof. We will again prove this by induction on the degree n of the config-
uration formula.

Case n = 1. There is nothing to prove.

Case n > 2. We just need to show this for a transposition of the form
(1,4). If i # n, by using the definition of the configuration formula and the
induction hypothesis we get the result. We will treat in more details the case
of the transposition (1,n). By definition, the original configuration formula

NAMING WORLDS IN MODAL AND TEMPORAL LOGIC 25

is formula (A.4), and similarly the configuration formula with nodes 1 and
n transposed is formula (A.5).

(A4) Confy(aj: 5,5 ¢ J,U{nk
B : Confp, (aj: @7 € Jp) A Pathg, o, P1).

(A.5) Confy(a;:®;,j¢ JyU{l};
Br:Confa (aj: ®j,j € J1) A Pathg, o, P1).

First case: n ¢ J; and 1 ¢ J,. In that case, the sets J; and J,, are
disjoint. Then in each of the above formulas ((A.4) and (A.5)) we can use
the induction hypothesis to permute the orders and get equivalent formulas
that share the order of their common nodes (the «; such that i ¢ J; U Jy,),
and in the first oy is the last node and in the second «,, is the last node.
We then use the definition of a configuration formula again for each of them
and get the same formula. The original formulas are therefore equivalent.

Second case: n € Jy. Then f3, is in the future of 31, and J, C Ji. Again
we use the induction hypothesis to get a reordered formula equivalent to
(A.4) and where o is the last node. If we then use the definition of this
configuration formula, we get (A.6).

(A.6) Confy(a;: ®ii¢ JyU{1}; 61 : (Pathg, o, 1)
N Confg (i : ®jiyi € Ji\Jp: By 1 (Pathg, o, Pr)
ANConfg, (o : ®; i € Jy))).

By induction hypothesis we reorder Confs, (a; : ®;,j € J1), which appears
in A.5, to get an equivalent formula where «,, is the last node and then use
the definition of the resulting configuration formula to obtain (A.7).
(A7) Confg (o 4,0 € J1\Jns

Bt (Pathg, o, ®n) A Confa, (a; : ®;,i € Jy))
Using Lemma A.5 we get the equivalence of our original formulas.

Third case: 1 € J,,. This is treated in he same way as the second case. []

Configuration formulas of different degrees can represent the same situa-
tion. In the example of Figure 2, we could also have written:

C’onfpy(,@ s Or AL AN QT Agsag s Az, s Ag).

We deal with the fact thus illustrated that we can replace a set of nodes in
a configuration by one node containing a subconfiguration in the following
lemma.

Lemma A.7. Let a1,...,ap, 0 and v be nodes, ®1,..., P, finite sets of
formulas. Suppose that § is on a path from v to an «y, let J be the set of
all indices j such that o is in the future of 6. Then we can prove from the
axioms that the following formulas are equivalent.

Confy(or: Pr;...50p : §yp)
Confy(oi: @i ¢ J;0: Confs(aj:®j,5 €J))

26 D. M. GABBAY AND G. MALOD

Proof. We proceed by induction on the degree n of the configuration formula.

Case n = 1. The result is easy to prove.

Case n > 2. In our definition of a configuration formula, if a; is the last
node, we get a node f3;. Let us choose k so that (3 is the closest to ¢ of all
B3; that are in the future of 6. Using Lemma A.6 with oy, as our privileged
point for the definition of the configuration formula yields (A.8). We wish
to show the equivalence of formulas (A.8) and (A.9).

(A.8) Confy(aj:Pj,j & Ji; i : Confa, (o : ®j,j € Ji) A Pathg, o, Pr)

(A.9) Confy(ci: ®;i ¢ J;0: Confs(aj: ®;,5 €J))

By the choice of ay, J = J; U {ay}. The definition of the configuration
formula Confs(a; : ®;,7 € J) in (A.9) is (A.10).

(A.10) Confs(By : Confa (o : @j,5 € Ji) A Pathg, o, Pr)
Lemma A.5 proves the equivalence of (A.9) and (A.11).

(A11) Confy(a: ;i ¢ J;
0 : Confs(By : Confg, (o : ®j,j € Ji) A Pathg, o, Pr))-

Finally we use the induction hypothesis on formula (A.9), and we get (A.8).
]

The next lemma just shows that we can extract information from a con-
figuration formula. This means that we can deduce from the original config-
uration formula a configuration formula by forgetting a node. By repeating
this process, we can deduce a path formula from a configuration formula.
Consider again Figure 2, then from the formula Conf, (o : A1,..., a6 : Ag)
we can successively forget the nodes s, ..., ag so that we deduce the path
formula Path. o, A;.

Lemma A.8. Let ay,...,ay, and v be nodes, ®1,..., P, finite sets of for-
mulas, then for all i € {1,...,n} we have:

FConfy(a;: ®;,1 <j<n)—=Conf(a;:®;,1<j<n,j#i).

Proof. By induction on the degree n of the configuration formula.

Case n = 1. This is true because of our convention that an empty config-
uration formula is T.

Case n > 2. We can then choose «; to use the definition of the configu-
ration formula, and we get:

Conf(coj: @55 ¢ JU{i}:B: Confsla;: 4,5 € J) A Pathgq, ;).

We get rid of the path formula relative to a; with Lemma A.5, and we get
the expected configuration formula using Lemma A.7. U

The second step in our simulation programme is to show that we can
add a path formula to a node, another conservative action we wish to
simulate. In the tree of Figure 2, we can add the formula Oy {OrAs to
the node ;. We show in the following lemma that we can then deduce
Confy(oq : {A1,0vO0rAa}, ..., a6 : Ag) from the original configuration for-
mula Conf, (o1 : A1,..., a6 : Ag).

NAMING WORLDS IN MODAL AND TEMPORAL LOGIC 27

Lemma A.9. Let ai,...,a, and vy be nodes, @1,..., P, sets of formulas,
F a formula such that F € ®;, then we have for j #i:

FConfy(...i0p: @i 05 0 Pyl)
= Confy(...;0;: Q... 505 : @ U{Pathg; o, F'};...)

Proof. By induction on the degree n of the configuration formula.

Case n = 1. This case is obvious.

Case n > 2. We use the definition of the configuration formula with o;
as the privileged node and get the following formula:

Confy(ag: @k ¢ JU{j};8: Confslay : p,k € J) A Pathgq,;P;).

We now proceed by case analysis, depending on whether ¢ € J or not.
Case i ¢ J. By induction hypothesis, we can add Pathg o, F' to f and then
we have Pathg;®; A Pathg o, F', where 3, a; and a; satisfy the conditions
of Lemma A.3, and we get the desired configuration formula.
Case i € J. We use Lemma A.8 to add Pathg,, I’ to 3 and then use
Lemma A.3 again.]

A.2. The simulation lemmas. We will here use our configurations to
prove the result that will help us during our completeness proof.

First we will need to show that we can indeed conservatively add a con-
figuration formula to a node, i.e. if we have the situation of Figure 2, then
we can conservatively add Conf, (a1 : Aq,..., 06 : Ag) to 7.

Lemma A.10. Let T be a tree containing nodes aq,...,c, and vy, and let
Dy,...,D, be finite sets of formulas such that for all i, ®; C .
Then we can conservatively add the formula Confy(a; : ®;,1 <i < n) to~y

inT.

Proof. By induction on the degree n of the formula.
Case n = 1. Adding a path formula to a node is a conservative action.
Case n > 2. By definition of the configuration formula we get:

Confy(aj: @5, ¢ JU{n};B:Confs(a;: ®;,5 € J)APathg, Py).

We can then add Confz(a;: ®;,j € J) conservatively to § by induction
hypothesis, and then Pathg,, € ®,, and we finally get the result using the
induction hypothesis again. (]

Here is the proof of lemma 3.3 used in section 3.2.

Lemma A.11. Let T be a tree, a and [two nodes and A a sentence such
that A € «. Suppose that a finite sequence of conservative actions enables
us to add B in (3.

Then there is a configuration formula we can conservatively add to o in
the tree T', obtained from T by removing the formula A from the node «,
so that we can then deduce in the node o of T' the formula A — Pathg gB.

Proof. Consider our sequence of conservative actions: it involves a finite
number of nodes «a1,...,a, and some accompanying finite sets of formu-
las ®1,...,®P,. Using Lemma A.10 we can add the needed configuration
formula G = Confy(a;: ®;,1 <i < n) to «, and then we can simulate the
conservative actions using Lemma A.5 and Lemma A.9, because A is in a.

28 D. M. GABBAY AND G. MALOD

Using Lemma A.8, we get a U {A,G} F Path, gB, and using Lemma A.1
we deduce a U{G} - A = Path, 3B. O

APPENDIX B. TECHNICAL LEMMAS IN THE TEMPORAL TRANSITIVE CASE

B.1. An additional lemma. The proof of the generalization of axiom 5’,
quoted as lemma 4.2 in section 4.1.5.

Lemma B.1. Let «g,...,a, be nodes, ®4,...,P, finite sets of formulas
such that ay, < -+ < a1 < aq then:

F OpBAConfa(ar: @1;... 50, Op)
— \/ Confae(...;0;: ®;U{B};...)

1<i<n

V \/ Confao(B:Biay: @r;.. .50, Op)
1<i<n
;<<
where 3 is a new node

V Confo(ar : @15 501 : Ppo15ay, 0 O, U{OpB}).

Proof. By induction on n.
Case n = 0. The result is immediate.
Case n > 1. Then Con fq,(c; @ ®;) is the formula:

Or((\ F)AOP((\ F)A...0p()\ F)...)).

Fed, Fedy Fed,

Using axiom 5, we get:
OpBAConfay(ar: Pri...iap : Dp)
= 0p(BA(\ F)ANOP((N\ F)A..0p()\ F)...)

Fed, Fed,y Fed,
VOp(BAOR((N\ FYANOR((C N\ F)A-.0p(\ F)...))
Fed, Fed,y Fed,
VOpr((/\ F)ANOPBAOR((N\ F)A...0p(J\ F)...)).
Fed, Fedo Fed,

We can then use the induction hypothesis to deduce the expected configu-
ration formula. O
APPENDIX C. TECHNICAL LEMMAS IN THE MODAL CASE

C.1. Adapting configurations and other tools.

C.1.1. Different definitions. As we have said in section 4.2.2, we adapt our
definitions to the modal setting.

Definition C.1. Let o and 3 be nodes such that (3 is a successor of a. Then
we have 3 = aby...b,. We call path formula from o to 3 for a formula B
the formula ¢9B. We write Path, gB for such a formula.

Path formulas lose some of their interest as a notation, but their use in
the results is the same, so we will keep them.

NAMING WORLDS IN MODAL AND TEMPORAL LOGIC 29

Definition C.2. Let ay,...,a, be successor nodes of v and let ®1,...,®,
be finite sets of formulas, we then define the notion of a configuration formula
Confy(oq : ®1;...50a, : ®,) by induction on n:

e if n =0 by convention Conf, () is T.

o if n=11et Conf,(ar: ®1) = Pathya, Npcg, F-

o if n > 2, let B be the closest node to «a;, on the path from ~ to
an that also belongs to a path leading from v to an «;; let J C
{1,...,n — 1} be such that j € J iff o is a successor of [3; then
let Confy(ar: @15...:05 : @) be the formula:

Conf,(aj: @5 ¢ JU{n};

B Pathge, [\ FAConfsla;:®;.5€)).
Fedy

C.1.2. Different results. We begin by proving a lemma for the propagation
of O-formulas.

Lemma C.3. Let ay,...,q, be successor nodes of a node v and consider
D1,..., D, finite sets of formulas, let A be a formula. Suppose that there is
a path of length p from ~ to ay. Then we have:

FOPANConfy(a; : @,1 <i<n) = Confy(...;0p : & U{A};...).

Proof. By induction on the degree n of the configuration formula.

Case n = 1. This case is straightforward.

Case n > 2. Use the definition of the configuration formula and choose
ay as the privileged node. We get:

Confy(coj: @55 ¢ JU{k};B: Confsla;: ®;,5 € J) A Pathgq, P).

Consider the path from v to «;: it goes through 3. Suppose that the path
from v to 3 is of length ¢. By induction hypothesis, we can bring [0P7%A in
[, and then the result is clear. O

We now prove that we can propagate C-formulas from one node to another
in a configuration.

Lemma C.4. Let ay,...,ay, be successor nodes of a node v and consider
Dq,..., D, finite sets of formulas. Suppose that there is a path of length p
from o to ay, and that OPA € ®;. Then we have:

FConfy(a;: ®;,1 <i<n)— Confy(...;0p: @ U{A};...).

Proof. By induction on the degree n of the configuration formula.

Case n = 1. There is nothing to do.

Case n > 2. Use the definition of the configuration formula with a; as
the privileged node. There is at least oy as a successor to ;. Hence 3 is
aj. We get the formula:

Confy(oi: P i ¢ JU{j}ialj:(/\ FYANConfo,(ai: @i i€ J)).
Fed;

Since k € J and P A € ®; we can apply Lemma C.3 to get the configuration
formula we needed.]

30 D. M. GABBAY AND G. MALOD

We also need to show that we can add path formulas. This was done in
the temporal case using the fact that we had past and future operators and
axioms expressing their symmetry. The result is still true because the path
formula is in a certain sense already there in the configuration.

Lemma C.5. Let ay,...,q, be successor nodes of a node v and consider
®q,..., P, finite sets of formulas. Suppose that o is a predecessor of ay
and that A is a formula such that A € ®. Then we have:

FConfy(a;: ®;,1 <i<n)
— Confy(...;0a5: ®;U{Pathq; o, A} .).

Proof. Use the definition of the configuration formula with «; as the priv-
ileged node. There is at least ay, as a successor to aj. Hence 3 is a;. We
get the formula:

Confy(ai: @i ¢ JU{j}

aj /\ FYANConfo;(ai: @i € J)).
Fed;
Using Lemma A.8, we can deduce the formula Pathq; o, A from the hypoth-
esis Confz(a; : @4, € J), and using Lemma A.5 we can add it to ;. [0

Finally, need prove the lemma 4.6 used in section 4.2.2.

Lemma C.6. Let T be a tree and o be a node in T. Let D and A(x) be
formulas, where x is free in A. Suppose we can conservatively add to «
Ale/z] for a new constant ¢. Then there exists a variable w, a finite set
of formulas ® contained in o and there are nodes ai,...,qn in the tree,
containing finite sets of formulas ®1,...,®, such that:

FConfe(a: PU{D}iag: O1;...50p : Op)
— Pathe oD ANVwA[w/x].

Proof. We will show a stronger result. Keep the hypothesis of the lemma.
For all nodes v, ...,7vn and formulas Cy, ..., C,,, we will show that there
exists a variable w, a finite set of formulas ® contained in « and nodes
Qai,...,qp, in the tree, containing finite sets of formulas ®q,...,®, such
that:

FConfe(yi: Ciy1 <i<mia:Pjaq:Pr;...50p: D)
— Confe(vi: Ciy1 <i<m;a:VwAw/x]).

By induction on the number p of conservative actions which enable us to
add Alc/x] in a.

Case p = 1. Then it must have been a deduction in «, because ¢
is a new constant, i.e. Alc/x] cannot have been propagated nor can it
be a path formula. Using Lemma A.2 we get a set ® and a variable w
such that ® + VwA[w/z], and then F Confc(v;: C;,1 <i<mja:®P) —
Confe(vi:Ci,1 <i<mja:YwAw/z]).

Case p > 2. If A[c/z] was obtained by deduction in «, we have then
a finite set @ such that & App/jee Fle/u] — Alc/z], where we write
Flc/u] to mean that some of the F' contain the constant ¢, i.e. are equal

NAMING WORLDS IN MODAL AND TEMPORAL LOGIC 31

to a formula F'(u) where we substitute ¢ to u. If F' do not contain ¢, just
suppose that u does not appear in F. We can use Lemma A.2 to generalize
this and get a variable w such that = Vw A\ pcq Flw/u] = YwA[w/z]. Then
we have a shorter sequence of conservative actions which enable us to add
Areo Flc/u] in a. By induction hypothesis, we get a finite set of formulas
® contained in « and nodes «aj,...,q, in the tree, containing finite sets of
formulas &4, ..., ®,, such that:

FConfe(vi:Ci,1<i<mja:®ar:Pr;...;50,: D)

= Confe(yi : Ciy1 <i<mja:Vw /\ Flw/ul).
Fed!

We can then deduce the appropriate configuration formula.

If the last step of the sequence was to propagate a O-formula, we have a
node 3, such that the path from 3 to « is of length ¢, where we can add by a
shorter sequence of conservative actions the formula 09A[¢/x]. By induction
hypothesis, we get a variable w, a finite set of formulas ® contained in (3
and nodes a1, .. ., a, in the tree, containing finite sets of formulas ®4,...,®,
such that:

FConfe(vi:Ci,1<i<mya:T;B8:®a1:P15... 50, 0p)
= Confe(yi: Ciy1 <i<mia:T;p:YwlAlw/z]).

Using the Barcan formula, we have - VwOA[w/z] — OVwA[w/z], and
we can then deduce the configuration formula from the above expression.

If the last step was to add a path formula, we have a node (3, such that
the path from « to 3 is of length ¢, where we can add by a shorter sequence
of conservative actions the formula A’[c¢/z], and A = (?A’. By induction
hypothesis, we get a variable w, a finite set of formulas ® contained in (3
and nodes a1, .. ., a, in the tree, containing finite sets of formulas @4, ..., ®,
such that:

FConfe(vi:Ci,1 <i<mya:T;8:®a1:P15... 50, 0p)
— Confga; : Ci,1 <i<mja:T;3:VwA w/z]).

We can then add the path formula ¢9VA'[w/x] in o using Lemma C.5, and
use the fact that - QWwA'[w/x] — YwiA [w/x]. O

REFERENCES

[1] Blackburn, P., 1993 “Nominal tense logic”, Notre Dame Journal of Formal Logic, 34,
56-83.

[2] Blackburn, P. and Tzakova, M., 1998a, “Hybrid completeness”, Logic Journal of the
IGPL, 6(4), 625-650.

[3] Blackburn, P. and Tzakova, M., 1998b, “Hybridizing concept languages”, Annals of
Mathematics and Artificial Intelligence, 24, 23-49.

[4] Bull, R., 1973, “An approach to tense logic”, Theoria, 36, 282-300.

[5] Gabbay, D.M., 1994, Temporal logic vol.1: mathematical foundations, Oxford: Oxford
University Press.

[6] Gabbay, D.M., 1996, Labelled deductive systems vol.1, Oxford: Oxford University
Press.

[7] Gabbay, D.M., 1999, Fibring logics. Oxford: Oxford University Press.

[8] Hughes, G.E. and Creswell, M.J., 1994, A companion to modal logic, London:
Methuen and Co. Ltd.

32 D. M. GABBAY AND G. MALOD

[9] Passy, S. and Tinchev, T., 1991, “An essay in combinatory dynamic logic”, Informa-
tion and Computation, 93, 263—-332.
[10] Prior, A., 1967 Past, present and future. Oxford: Oxford University Press.

King’s COLLEGE, STRAND, LoNnDON WC2R 2LS, UNiTED KINGDOM
Current address: King’s College, Strand, London WC2R 2LS, United Kingdom
E-mail: dg@dcs.kcl.ac.uk

Current address: Ecole Normale Supérieure de Lyon, 46, allée d’Italie, 69364 Lyon
Cedex 07, France, visiting King’s College
E-mail: gmalod@ens-lyon.fr

