
Direct Resolution for Modal-like Logics

Carlos Areces Juan Heguiabehere
{carlos, juanh}@science.uva.nl

ILLC, Faculty of Science, University of Amsterdam

Abstract. In this paper we discuss the implementation of a hybrid logic
theorem prover based on resolution, HyLoRes, which fuses first-order
proving techniques with modal and hybrid reasoning. The focus is on
implementation details, and on how we adapted first-order methods to
the hybrid environment.

1 Introduction

Designing resolution methods that can directly (without translation into large
background languages) be applied to modal logics, received some attention in
the late 1980s and early 1990s; see for example [14, 13]. Given the simplicity of
propositional resolution and the fact that modal languages are sometimes viewed
as “simple extensions of propositional logic,” we might expect modal resolution
to be as simple and elegant. However, direct resolution for modal languages
proved to be a difficult task. Intuitively, in basic modal languages the resolution
rule has to operate inside boxes and diamonds to achieve completeness. This
leads to more complex systems, less elegant results, and poorer performance,
ruining the “one-dumb-rule” spirit of resolution. In [2] a resolution calculus for
hybrid logics addressing these problems was introduced: the hybrid machinery
is used to “push formulas out of modalities” and in this way, feed them into a
simple and standard resolution rule.

We cannot give a proper introduction to hybrid logics in this paper. See the
Hybrid Logic site at http://www.hylo.net for an introduction to the topic and a
broad on-line bibliography. We intend instead to describe HyLoRes, an automated
theorem prover based on the calculus introduced in [2], with special emphasis
on implementation details. [3] provides a description of HyLoRes focused on the
theoretical aspects involved in its development.

Structure of the paper. In Section 2 we give the syntax and semantics of the
hybrid logics we are going to work with, the logics H(@) and H(@, ↓). In Section
3 we briefly introduce the calculus used in HyLoRes. In Section 4 we describe the
algorithm we used as a starting framework. In Section 5 we discuss the language
we chose to do the implementation, and explain how to run HyLoRes. Section
6 discusses implementation details, such as data structures and optimizations.
Section 7 shows some ongoing testing. Finally, Section 8 shows the next steps
planned in the development of HyLoRes.

2 Hybrid Languages

Syntax. Let REL be a countable set of relational symbols, PROP a countable set of
propositional variables, NOM a countable set of nominals, and SVAR a countable
set of state variables. We assume that these sets are pairwise disjoint. We call
SSYM = NOM∪SVAR the set of state symbols, and ATOM = PROP∪NOM∪SVAR

the set of atoms. The well-formed formulas of the hybrid language H(@, ↓) in
the signature 〈REL,PROP,NOM, SVAR〉 are

FORMS := > | a | ¬ϕ | ϕ1 ∧ ϕ2 | [R]ϕ | @sϕ | ↓x.ϕ,

where a ∈ ATOM, x ∈ SVAR, s ∈ SSYM, R ∈ REL and ϕ, ϕ1, ϕ2 ∈ FORMS.
Note that all types of atomic symbol (i.e., proposition symbols, nominals and
state variables) are formulas. Further, note that the above syntax is simply that
of ordinary (multi-modal) propositional logic extended with clauses for @sϕ and
↓x.ϕ. Finally, the difference between nominals and state variables is simply this:
nominals cannot be bound by ↓, whereas state variables can.

The notions of free and bound variable are defined as in first-order logic, with
↓ as the only binding operator. A sentence is a formula containing no free state
variables.

The basic hybrid language is H, basic modal logic extended with nominals.
Further extensions are usually named by listing the added operators; we are
interested in the logics H(@) and H(@, ↓).

Semantics. A (hybrid) model M is a triple M = 〈M, {Ri}, V 〉 such that M is a
non-empty set, {Ri} is a set of binary relations on M , and V : PROP∪NOM →
Pow (M) is such that for all nominals i ∈ NOM, V (i) is a singleton subset of M .

An assignment g for M is a mapping g : SVAR → M . Given an assignment
g, we define gx

m
(an x-variant of g) by gx

m
(x) = m and gx

m
(y) = g(y) for x 6= y.

Assignments are not needed when dealing with H(@).
Let M = 〈M, {Ri}, V 〉 be a model, m ∈ M , and g an assignment. For any

atom a, let [V, g](a) = {g(a)} if a is a state variable, and V (a) otherwise. Then
the satisfiability relation is defined as follows:

M, g,m > always
M, g,m a iff m ∈ [V, g](a), a ∈ ATOM

M, g,m ¬ϕ iff M, g,m 6 ϕ
M, g,m ϕ1 ∧ ϕ2 iff M, g,m ϕ1 and M, g,m ϕ2

M, g,m [R]ϕ iff ∀m′.(R(m,m′) =⇒ M, g,m′
 ϕ)

M, g,m @sϕ iff M, g,m′
 ϕ, where [V, g](s) = {m′}

M, g,m ↓x.ϕ iff M, gx

m
,m ϕ.

We write M, g ϕ iff for all m ∈ M , M, g,m ϕ; and M ϕ iff for all
g, M, g ϕ. These notions extend to sets of formulas in the standard way. A
formula ϕ is satisfiable if there is a model M, an assignment g on M, and a
world m ∈ M such that M, g,m ϕ. A formula ϕ is valid if for all models M,
M ϕ.

3 The Resolution Calculus

Briefly, the resolution calculus implemented by HyLoRes is as follows. Define the
following rewriting procedure nf on formulas of H(@, ↓). Let ϕ be a formula in
H(@, ↓), nf (ϕ) is obtained by repeated application of the rewrite rules nf until
none is applicable:

¬@tψ
nf

; @t¬ψ

¬↓x.ψ
nf

; ↓x.¬ψ

¬¬ψ
nf
; ψ

Clauses are sets of formulas in this normal form. To determine the satisfiability
of a sentence ϕ ∈ H(@, ↓) we first notice that ϕ is satisfiable iff @tϕ is satisfiable,
for a nominal t not appearing in ϕ. Define the clause set ClSet corresponding to
ϕ to be ClSet(ϕ) = {{@tnf (ϕ)}}. Next, let ClSet∗(ϕ) – the saturated clause set
corresponding to ϕ – be the smallest set containing ClSet(ϕ) and closed under
the following rules.

(∧)
Cl ∪ {@t(ϕ1 ∧ ϕ2)}

Cl ∪ {@tϕ1}
Cl ∪ {@tϕ2}

(∨)
Cl ∪ {@t¬(ϕ1 ∧ ϕ2)}

Cl ∪ {@tnf (¬ϕ1), @tnf (¬ϕ2)}

(RES)
Cl1 ∪ {@tϕ} Cl2 ∪ {@t¬ϕ}

Cl1 ∪ Cl2

([R])
Cl1 ∪ {@t[R]ϕ} Cl2 ∪ {@t¬[R]¬s}

Cl1 ∪ Cl2 ∪ {@sϕ}
(〈R〉)

Cl ∪ {@t¬[R]ϕ}

Cl ∪ {@t¬[R]¬n}
Cl ∪ {@nnf (¬ϕ)}

, for n new.

(@)
Cl ∪ {@t@sϕ}

Cl ∪ {@sϕ}

(SYM)
Cl ∪ {@ts}

Cl ∪ {@st}
(REF)

Cl ∪ {@t¬t}

Cl
(PARAM)

Cl1 ∪ {@ts} Cl2 ∪ {ϕ(t)}

Cl1 ∪ Cl2 ∪ {ϕ(t/s)}

Fig. 1. Resolution calculus for the logic H(@)

The computation of ClSet∗(ϕ) is in itself a sound and complete algorithm for
checking satisfiability of H(@), in the sense that ϕ is unsatisfiable if and only if
the empty clause {} is a member of ClSet∗(ϕ) [2]. To account for hybrid sentences
using ↓ we need only extend the calculus with the rule

(↓)
Cl ∪ {@t↓x.ϕ}

Cl ∪ {@tϕ(x/t)}
.

The full set of rules is a sound and complete calculus for checking satisfiability
of sentences in H(@, ↓).

4 The Given Clause Algorithm

HyLoRes implements a version of the “given clause” algorithm [22] shown in
Fig. 2. The implementation preserves the soundness and completeness of the
calculus introduced above, and ensures termination for H(@).

input: init: set of clauses
var: new, clauses, inuse: set of clauses
var: given: clause

clauses := {}; inuse := {}; new := normalize(init)
if {} ∈ new then return “unsatisfiable”
clauses := computeComplexity(new)
while clauses 6= {} do

{* Selection of given clause *}
given := select(clauses); clauses := clauses – {given}

{* Inference *}
new := infer(given, inuse); new := normalize(new)
if {} ∈ new then return “unsatisfiable”

{* Subsumption deletion *}
new := simplify(new, inuse ∪ clauses)
inuse := simplify(inuse, new)
clauses := simplify(clauses, new)

{* Initialization for next cycle *}
if notRedundant(given) then

inuse := inuse ∪ {given}
clauses := clauses ∪ computeComplexity(new)

return “satisfiable”

Fig. 2. Structure of the given clause algorithm

A brief explanation of the functions in Fig. 2:

– normalize(A) applies nf to formulas in A and handles trivial tautologies and
contradictions.

– computeComplexity(A) determines length, modal depth, number of literals,
etc. for each of the formulas in A; these values are used by select to pick the
given clause.

– infer(given,A) applies the resolution rules to the given clause and each clause
in A. If the rules (∧), (∨), (〈R〉) or (↓) are applicable, no other rule is ap-
plied as the clauses obtained as conclusions by their application subsume the
premises.

– simplify(A,B) performs subsumption deletion, returning the subset of A
which is not subsumed by any element in B.

– notRedundant(given) is true if none of the rules (∧), (∨), (¬[R]) or (↓) was
applied to given.

5 Implementation

5.1 Programming Language

HyLoRes is implemented in Haskell (ca. 3500 lines of code), and compiled with
the Glasgow Haskell Compiler (GHC) Version 5.04. We use Happy 1.13 to gener-
ate the parser. GHC produces fairly efficient C code which is afterward compiled
into an executable file. Thus, users need no additional software to use the prover.
The HyLoRes site (http://www.illc.uva.nl/~carlos/HyLoRes) provides exe-
cutables for Solaris (tested under Solaris 8) and Linux (tested under Red Hat
7.0 and Mandrake 8.2).

The original Haskell code is also made publicly available under the GPL li-
cense [8] (the code, though, is still unstable, being under active development).
We will soon provide also the intermediate C source which could then be com-
piled under a wider range of platforms. By making all code publicly available we
aim to encourage independent development.

5.2 How to Run HyLoRes

HyLoRes can be run from the command line, in the following manner:

hylores -f filename [-o order | -t timeout | -sr | -r | -s]

where:

– filename is the input file.
– order is the ordering precedence for selection of the given clause:

• s: Selects the clause with the least number of formulas.
• v: Selects the clause with the greatest total number of propositional

variables.
• d: Selects the clause for which the maximum modal depth is the smallest.
• p: Selects the clause for which the newest created nominal (as per the

(¬[R]) rule) is oldest.
– timeout is the time limit in seconds before the prover will stop.
– -sr selects direct (non-ordered) resolution.
– -r enables output of the rules applied and their results.
– -s enables output of the clause sets.

A typical run of HyLoRes is as follows:

Input file:

begin

!((down (x1 dia (x1 & p1))) -> p1)

end

Execution:
(carlos@guave 149) hylores -f test.frm -r

Input:

{[@(N0, (-P1 & Down(X1, -[R1]-(P1 & X1))))]}

End of input

Given: (1, [@(N0, (-P1 & Down(X1, -[R1]-(P1 & X1))))])

CON: {[@(N0, -P1)][@(N0, Down(X1, -[R1]-(P1 & X1)))]}

Given: (2, [@(N0, -P1)])

Given: (3, [@(N0, Down(X1, -[R1]-(P1 & X1)))])

ARR: {[@(N0, -[R1]-(P1 & N0))]}

Given: (4, [@(N0, -[R1]-(P1 & N0))])

DIA: {[@(N-2, (P1 & N0))][@(N0, -[R1]-N-2)]}

Given: (5, [@(N-2, (P1 & N0))])

CON: {[@(N-2, P1)][@(N-2, N0)]}

Given: (6, [@(N-2, N0)])

PAR (0,-2): {[@(N-2, (P1 & N-2))][@(N-2, -[R1]-(P1 & N-2))]

[@(N-2, Down(X1, -[R1]-(P1 & X1)))][@(N-2, -P1)]

[@(N-2, (-P1 & Down(X1, -[R1]-(P1 & X1))))]}

Given: (7, [@(N-2, P1)])

Given: (8, [@(N-2, -P1)])

RES: (7, [])

The formula is unsatisfiable

Clauses generated: 11

Elapsed time: 0.0

In addition to HyLoRes, a graphical interface called xHyLoRes implemented in
Tcl/Tk was developed. It uses HyLoRes in the background and provides full file
access and editing capabilities, and a more intuitive control of the command line
parameters of the prover, in the manner of Spin/XSpin [19]. A screenshot of
xHyLoRes can be seen below.

6 The Gory Details

6.1 Data Structures

The design of HyLoRes is modular with respect to the internal representation of
the different kinds of data. We have used the Edison package [16] (a library of
efficient data types provided with GHC) to implement most of the data types
representing sets. The basic data types we created are as follows.

Formulas. We took advantage of the possibility of defining recursive data types
in Haskell, with the result that the data type definition closely resembles the
definition given in Section 2:

data Formula

= Taut | Nom Int | Prop Int | Var Int | Neg Formula | Con [Formula]

| At Int Formula | Atv Int Formula | Down Int Formula

| Box Int Formula

deriving (Ord, Eq)

The integers in the definition represent the different elements of their corre-
sponding sets, i.e. Nom 1 represents the element n1 in the set NOM, and so on.
Conjunctions are stored as the Con constructor plus a list of conjuncts, to allow
for n-ary conjunctions.

Clauses and Sets of clauses. The algorithm deals with three main repositories
of clauses: clauses , that holds the eligible candidates por processing; inuse, that
holds the clauses which can interact with the given clause, and new , where the
clauses that result from the application of the rules go. The different clause
sets and their clauses have different access patterns and aggregate information
and need a different data type for each. clauses uses the UnbalancedSet type
provided by the Edison library which is specially optimized for search; as in every
cycle the given clause has to be selected from it. The comparison of clause scores
is given as the ordering function, so the given clause can be selected without
having to examine the whole set. The elements of clauses are tuples containing
the clause proper (represented also as an UnbalancedSet), a complexity measure
which depends on the chosen order for clause selection, and the clause number.

In new , clauses are stored as UnbalancedSets while new itself is a list of
clauses, as all its elements have to be processed one by one in each cycle. inuse
is a list of pairs composed of the clause number and a clause represented also as
a list, as both clauses and formulas in clauses need to be accessed one by one in
every cycle.

State and Output Monads. Functional programming does not allow for global
variables or side effects; in a function, all input must be passed as an argument
and all consequences must be part of the returned value. For some applications,
this can result in functions having very long and unintuitive lists of arguments,
and contrived output types. In Haskell, a particular data type called monad is

used to overcome this problem. The internal state of the given clause algorithm
(the sets clauses , inuse and new , the data structures used for subsumption
checking, the control information, etc) is represented as a combination of a state
and an output monads [24]; the former provides transparent access to the internal
state of the algorithm from the monadic functions that perform inference, while
the latter handles all printing services with no need of further parameters in the
function signatures. In addition, the use of monads allows the addition of further
structure (hashing functions, etc.) to optimize search, with minimum re-coding.
We have already experienced the advantages of the monad architecture as we
have been able to test different data structures and improve the performance of
some of the most expensive functions with great ease.

6.2 Optimizations

The first implementation of HyLoRes was very näıve and as a result was terribly
inefficient. We then proceeded to adapt and apply well established first-order
resolution optimizations to the hybrid environment, with encouraging results.

Ordered resolution with selection. HyLoRes actually implements a version of
ordered resolution with selection [5], where the application of the (RES) and
([R]) rules are restricted to certain selected formulas in the clause. Ordered
resolution with selection greatly reduces the size of the saturated set, preventing
the generation of certain clauses, without compromising the completeness of the
calculus. Interestingly, the (still unpublished) proof of completeness of ordered
resolution with selection for H(@, ↓) closely follows the proof in [5], based on a
step by step construction of a Herbrand model for any consistent input clause
set. Once more, hybrid logics seem to provide the appropriate framework to
merge first-order and modal ideas.

We are currently investigating the effect of different orders and selection
functions on different inputs.

Formula indexing. The formulas are indexed using a mapping between formulas
and integers, in which indexes for positive and negative occurrences of the same
formula will be equal except for the sign. As the (RES) rule involves searching
for complementary formulas, searching for clauses to resolve with is made more
efficient by storing the clauses in inuse as ordered lists of the indexes. This
indexing is much simpler than in the case of first-order, as clauses do not have
free variables.

Subsumption checking. Whenever a clause A follows from another clause B in
the database, A is said to be subsumed by B, and can be ignored, reducing
the search space but maintaining correctness. Finding out which clauses can be
discarded is one of the – or perhaps “the” – most expensive operations in resolu-
tion based theorem provers [21]. HyLoRes uses a simple version of subsumption
checking where a clause C1 subsumes a clause C2 if C1 ⊂ C2. Version 0.5 of the

prover implemented this test very inefficiently, checking the subset relation ele-
ment by element, and clause by clause. In the latest prototype, a set-at-a-time
subsumption checking algorithm which uses a clause repository structured as
a trie [21] was implemented, with notorious improvements (See Section 7). We
also noticed that while forward subsumption is essential, many times backward
subsumption does not really make a difference. This is also the case for some
first-order logic provers; see [23].

The clause repository is organized as a list of tries, in the following manner.
The clauses are inserted and queried as ordered lists of integers. The repository
is a list of tries, in which each node represents a formula and each path that
ends in a leaf node represents a clause.

Example 1. The set of clauses

{ {1, 2, 3}, {1, 2, 4}, {1, 2, 8}, {1, 4, 5}, {1, 4, 7, 8},

{1, 4, 7, 9, 10}, {2, 3, 9}, {2, 7, 9}, {2, 7, 8, 10}, {2, 7, 8, 11} }

is stored as shown in Fig. 3.

4

2

5
1

7
9
8

10

2
3

7

9

8

9

10

8

3
4

11

Fig. 3. Trie representation for a set of clauses

When inserting a clause, if its head is the root of any of the visible tries then we
insert its tail into that trie, otherwise we add a branch to the current node and
insert the clause there. In this way, all clauses are represented as a path from
one of the root nodes to a leaf, so that all the clauses that are extensions of a
particular path are stored as branching from it. The fact that the formulas in the
clause are ordered gives us the possibility to optimize search, both by having a
unique representation and by knowing when it will be useless to keep searching.
The clause repository holds both the clauses in inuse and the ones in clauses ,
so as to check for (forward or backward) subsumption against just one set of

clauses, which also eliminates the cost of transferring clauses from one trie to
the other when a clause is moved from clauses to inuse. Subsumption checking
has then become very efficient, and indeed it brought a speed up of about two
orders of magnitude to the prover.

In forward subsumption, the clauses in new are checked one by one for sub-
sumption by the clauses in inuse or clauses , as follows: for each clause C in new ,
for each of the visible tries Ti in the repository, if the root of Ti is in the checked
clause, all the branches of Ti are successively checked for the elements of the
clause that are greater than the root. If we reach the end of any branch, then
the clause is subsumed by the repository and the search stops. If we find any
element not present in C, none of the clauses represented by the current path
subsumes C and we can proceed to the next trie. If the root of the next trie
is greater than the maximum element in C, no match will be possible and the
search ends.

In backward subsumption, the clauses in new are checked one by one for
subsumption of the clauses in inuse or clauses , as follows: for each clause C in
new , for each of the visible tries Ti in the repository whose root is less than or
equal to the head of the clause (the smallest element), if the root of Ti is equal
to the head of C, we check the branches of Ti for existence of the elements in the
tail of C, and if the root of Ti is less than the head of C we check the branches of
Ti for existence of the whole clause. When we find a match for the last element
of the clause, we know that all the paths that originate from Ti are subsumed
by the clause: we retrieve all of them, and examine the next trie. When we reach
a Ti with a root greater than the head of C, the search ends.

Input analysis. At this moment, HyLoRes performs a very simple analysis of
its input. It checks for the presence of the [R], 〈R〉,@ and ↓ operators and for
nominals in order to know which rules will need checking for applicability. For
example, if the ↓ operator does not appear in the input, then the (↓) rule is
switched off and never attempted. Most first-order provers perform a far more
detailed analysis of the input and decide heuristics and settings on account of
their findings.

Application of the rules. The rules are applied in such a way as to make the sets
of clauses grow as slowly as possible. For example, the (¬∧) is checked first of
all, and if it’s applied then no other rule is applied, and also the given clause is
not added to inuse (the antecedent and consequent clauses are equivalent, but
it does not show in our implementation of subsumption checking). The same is
true of (∧). Then (RES) is applied, and the empty clause is searched for in the
result before proceeding with the rest of the rules.

Another thing that helps pruning the search space is postponing the creation
of new prefixes (by application of the 〈R〉 rule) until the clause set is saturated for
the current set of prefixes. Whenever the 〈R〉 rule can be applied, the application
is postponed until clauses is empty.

Paramodulation. We need some kind of paramodulation to handle nominals and
@. We can once more take advantage from experience in first-order resolution
here. In [4], Bachmair and Ganzinger develop in detail the modern theory of
equational reasoning for first-order saturation based provers. Many of the ideas
and optimizations discussed there can and should be implemented in HyLoRes.
In the current version, paramodulation is done näıvely, the only “optimization”
being the orientation of equalities so that we always replace nominals by nominals
which are lower in a certain ordering.

7 Testing

During the development of HyLoRes, we made extensive use of test sets like
those described in [6, 15] to evaluate the performance of the prover and guide
design decisions. Some results are shown in Fig. 4. An important drawback of
these test sets though, is that they only provide purely modal input. We are
at the moment developing a random generator of hybrid formulas following the
algorithm presented in [17], to test the performance of HyLoRes on hybrid input.

Hand-tailored tests. Fig. 4 a) represents a set of runs of the Balsiger, Heuerding
and Schwendimann test set [6], with different criteria for selecting the given
clause, and the description logic prover RACER [11], version 1-6r2, included as
a reference. This set consists of nine groups of two sets of 21 problems. Each
problem in a set is exponentially more difficult than the previous one, each group
consists of one set of satisfiable problems and one set of unsatisfiable problems,
and each group represents a different type of problem. The graph represents the
number of instances solved by the prover in each set before the 100 seconds time
limit elapsed. Most of these sets have become trivial for mature modal provers;
some of them being solved during simplification. Nonetheless, it provided a quick
way to evaluate the prover in the early stages.

Random tests: Random Modal QBF test set. Fig. 4 b) shows a run of several
versions of HyLoRes and other provers over a very easy area of the Random Modal
QBF test set [15]. The X axis represents the number of clauses in the original
QBF formula, and the Y axis represents the average time for solving an instance,
with 64 samples/datapoint. The problems range from being all satisfiable at the
left, to being all unsatisfiable at the right. We benchmarked HyLoRes 0.5 (no
formula indexing, no clause repository), HyLoRes 0.9 (formula indexing, clause
repository, backward subsumption still using clause-at-a-time comparison) and
HyLoRes 1.0 (now with backward subsumption using set-at-a-time comparison).
We also ran SPASS v. 1.0.3 [25] with the standard translation to first-order
logic, MSPASS v. 1.0.0t.1.3 [18], *SAT version 1.3 [20], and RACER v. 1-6r2 on
this test, to compare with state-of-the art provers; in general the times for these
provers only reflect start up times, as revealed by the absence of the easy-hard-
easy pattern. This test set allowed us to gauge the progress of HyLoRes as we
added optimizations to it, although QBF derived modal formulas have a very

rigid structure, which meant that a good performance on this test set was not a
guarantee of good performance overall. See [12] for more on this test set.

Random tests: Random Modal CNF test set. This more recent test set [17] gen-
erates random modal CNF formulas directly. We ran the test for C = 2.5, V = 3
and D = 1; Fig. 4 c) represents median time elapsed as a function of (num-
ber of clauses/number of variables). The timeout value was 100 seconds: again,
it was too easy for mature provers to compare their performances, while for
HyLoRes there were a few timeouts in the hardest area. Fig. 4 d) plots the satis-
fiable/unsatisfiable fractions in the test we just described. There are zones of the
plot in which the sum of the satisfiable and unsatisfiable fractions is less than
1; this is due to timeouts, as the sum represents the fraction of problems solved
before the time limit.

 branch_pbranch_n d4_p d4_n dum_p dum_n grz_p grz_n lin_p lin_n path_p path_n ph_p ph_n poly_p poly_n t4p_n t4p_p
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
Balsiger, Heuerding and Schwendimann test set

Minimum prefix
Max. vars
Min. modal depth
Min clause size
Depth, then prefix
RACER

5 10 15 20 25 30
10

−2

10
−1

10
0

Test in Modal CNF, V=3, D=1, L/V=1−30

M
ed

ia
n

us
er

 ti
m

e

L/V

HyLoRes 1.0
MSPASS
*SAT
RACER

a) c)

2 4 6 8 10 12 14 16
10

−2

10
−1

10
0

10
1

Random Modal QBF: C=1−16, V=2, D=1

Number of clauses

T
ot

al
 u

se
r

tim
e

/ S
at

is
fia

bl
e

fr
ac

tio
n

HyLoRes 0.5
HyLoRes 0.9
HyLoRes 1.0
SPASS Std
*SAT
RACER
MSPASS
Satisf. fraction

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Test in Modal CNF, V=3, D=1, L/V=1−30

L/V

S
at

is
fia

bl
e/

U
ns

at
is

fia
bl

e
F

ra
ct

io
ns

HLR sat
Others sat
HLR unsat
Others unsat
HLR total
Others total

b) d)

Fig. 4. Tests

8 Conclusions

The prototype is not yet meant to be competitive when compared with state of
the art provers for modal-like logics like DLP, *SAT, MSPASS or RACER [7, 10].
On the one hand, the system is still in a preliminary stage of development (only
very simple optimizations for hybrid logics have been implemented), and on the
other hand the hybrid language and the languages handled by the other provers
are related but different. H(@, ↓) is undecidable while the target languages of
the other provers are decidable. And even when comparing the fragment H(@)
for which HyLoRes implements a decision algorithm, the expressive powers are
incomparable (H(@) permits free Boolean combinations of @ and nominals but
lacks, for example, the limited form of universal modality available in the T-Box
of DL provers [1]).

There certainly remain many things to try and improve in HyLoRes. The next
steps in its development include

– a better treatment of paramodulation;
– support for the universal modality A [9] (which would allow us to perform

inference in full Boolean knowledge bases of the description logic ALCO);
– saving the saturated clause set, if any, for querying;
– and improve input analysis and heuristics.

But the main goal we pursued during the implementation of this prototype has
been largely achieved: direct resolution can be used as an interesting, and per-
haps even competitive, alternative to tableaux based methods for modal and
hybrid logics.

Acknowledgment. C. Areces is supported by the NWO project # 612.069.006

References

1. C. Areces. Logic Engineering. The Case of Description and Hybrid Logics. PhD
thesis, Institute for Logic, Language and Computation, University of Amsterdam,
Amsterdam, The Netherlands, October 2000.

2. C. Areces, H. de Nivelle, and M. de Rijke. Resolution in modal, description and
hybrid logic. Journal of Logic and Computation, 11(5):717–736, 2001.

3. C. Areces and J. Heguiabehere. HyLoRes: A hybrid logic prover based on direct
resolution. Proceedings of Advances in Modal Logic (AiML’02), 2002.

4. L. Bachmair and H. Ganzinger. Equational reasoning in saturation-based theorem
proving. In Automated deduction—a basis for applications, Vol. I, pages 353–397.
Kluwer Acad. Publ., Dordrecht, 1998.

5. L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 2,
pages 19–99. Elsevier Science, 2001.

6. P. Balsiger, A. Heuerding, and S. Schwendimann. A benchmark method for the
propositional modal logics K, KT, S4. Journal of Automated Reasoning, 24(3):297–
317, 2000.

7. E. Franconi, G. De Giacomo, R. MacGregor, W. Nutt, and C. Welty, editors.
Proceedings of the 1998 International Workshop on Description Logics (DL’98),
1998.

8. GNU General Public License. http://www.gnu.org/copyleft/gpl.html.
9. V. Goranko and S. Passy. Using the universal modality: gains and questions.

Journal of Logic and Computation, 2:5–30, 1992.
10. P. Lambrix, A. Borgida, M. Lenzerini, R. Möller, and P. Patel-Schneider, editors.

Proceedings of the 1999 International Workshop on Description Logics (DL’99),
1999.

11. V. Haarslev and R. Möller. RACER System Description. http://kogs-www.

informatik.uni-hamburg.de/~race/

12. J. Heguiabehere and M. de Rijke. The Random Modal QBF Test Set. In
E. Giunchiglia and F. Massacci, editors Proc. IJCAR Workshop on Issues in the
Design and Experimental Evaluation of Systems for Modal and Temporal Logics,
2001.

13. P. Enjalbert and L. Fariñas del Cerro. Modal Resolution in Clausal Form. Theo-
retical Computer Science, 65(1):1–33, 1989.

14. G. Mints. Resolution calculi for modal logics. American Mathematical Society
Translations, 143:1–14, 1989.

15. F. Massacci. Design and results of the Tableaux-99 Non-Classical (Modal) Systems
Comparison. In N. Murray, editor, Proceedings of TABLEAUX’99, volume 1617 of
LNAI, pages 14–18. Springer-Verlag, 1999.

16. C. Okasaki. An Overview of Edison. ICFP 2000 (Haskell Workshop), 2000.
http://citeseer.nj.nec.com/okasaki00overview.html

17. P. Patel-Schneider and R. Sebastiani. A new very-general method to generate
random modal formulae for testing decision procedures. Journal of Artificial In-
telligence Research. Submitted.

18. R. Schmidt. MSPASS Home Page. http://www.cs.man.ac.uk/~schmidt/mspass/.
19. Spin – Formal Verification. http://spinroot.com/spin/whatispin.html.
20. A. Tacchella. *SAT Project Homepage. http://www.mrg.dist.unige.it/

~starsat/home.html.
21. A. Voronkov. The anatomy of Vampire. Journal of Automated Reasoning,

15(2):237–265, 1995.
22. A. Voronkov. Algorithms, datastructures, and other issues in efficient automated

deduction. In R.Goré, A. Leitsch, and T. Nipkow, editors, Automated Reasoning.
IJCAR 2001, number 2083 in LNAI, pages 13–28, Siena, 2001.

23. I.V. Ramakrishnan and R. Sekar and A. Voronkov. Term Indexing. In A. Robinson
and A. Voronkov, editors, Hanbook of Automated Reasoning, pages 1853–1964,
Elsevier Science, 2001.

24. P. Wadler. Monads for functional programming. In J. Jeuring and E. Meijer,
editors, Advanced Functional Programming, number 925 in LNCS. Springer-Verlag,
1995.

25. C. Weidenbach. SPASS home page. http://spass.mpi-sb.mpg.de/.

