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Abstract

Constraint LTL, a generalization of LTL over Presburger
constraints, is often used as a formal language to specify the
behavior of operational models with constraints. The freeze
quantifier can be part of the language, as in some real-time
logics, but this variable-binding mechanism is quite general
and ubiquitous in many logical languages (first-order tem-
poral logics, hybrid logics, logics for sequence diagrams,
navigation logics, etc.). We show that Constraint LTL over
the simple domain 〈N,=〉 augmented with the freeze opera-
tor is undecidable which is a surprising result regarding the
poor language for constraints (only equality tests). Many
versions of freeze-free Constraint LTL are decidable over
domains with qualitative predicates and our undecidability
result actually establishes Σ1

1-completeness. On the posi-
tive side, we provide complexity results when the domain is
finite (EXPSPACE-completeness) or when the formulae are
flat in a sense introduced in the paper. Our undecidability
results are quite sharp (i.e. with restrictions on the num-
ber of variables) and all our complexity characterizations
insure completeness with respect to some complexity class
(mainly PSPACE and EXPSPACE).
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1 Introduction

Model-checking for infinite-state systems. Temporal
logics are well-studied formalisms to specify the behavior
of finite-state systems and the computational complexity of
the model-checking problems is nowadays well-known, see
e.g. a survey in [37]. However, many systems such as com-
munication protocols have an infinite amount of configu-
rations and usually the techniques for the finite case can-
not be applied directly. For numerous infinite-state sys-
tems, the model-checking problem for the linear-time tem-
poral logic LTL can be easily shown to be undecidable
(counter automata, hybrid automata and more general con-
straint automata [35, Chapter 6]). Actually, simpler prob-
lems such as reachability are already undecidable. How-
ever, remarkable classes of infinite-state systems admit de-
cidable model-checking problems such as the timed au-
tomata [1] and subclasses of counter automata [31, 5, 6, 21].
For instance, fragments of LTL with Presburger constraints
have been shown decidable over appropriate counter au-
tomata [13, 19]. In order to push further the decidability
border, one way consists in considering larger classes of op-
erational models, see e.g. [31]. Alternatively, enriching the
specification language is another possibility. In the paper
we are interested in studying systematically the extensions
of versions of LTL over concrete domains by adding the so-
called freeze quantifier and to analyze the consequences in
terms of decidability and computational complexity.

A variable-binding mechanism. The freeze quantifier in
real-time logics has been introduced by Alur and Henzinger
in the logic TPTL, see e.g. [2]. The formula x · φ(x) binds
the variable x to the time t of the current state: x·φ(x) is se-
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mantically equivalent to φ(t). Alternatively, in the explicit
clock approach [27], there is an explicit clock variable t and
even though in this approach the freeze variable-binding
mechanism is possible, the logical formalisms from [2]
and [27] are incomparable. In this paper, we want to ex-
tend some of the decidable logics from [13, 19, 18] to ad-
mit the freeze quantifier: ↓y=x φ(y) holds true at a state
iff φ(y) holds true at the same state with y taking the value
of x. Here, y can be in the scope of temporal operators.
A crucial difference with the logics in [2, 27] rests on the
fact that the variable x may not be monotonic. We focus
on decidability and complexity issues when the language of
constraints (at the atomic level of the logics) is very sim-
ple in order to isolate properly the very effects of the freeze
quantifier. We know for instance that LTL over integer pe-
riodicity constraints augmented with the freeze operator is
EXPSPACE-complete [18].

The above-mentioned variable-binding mechanism that
allows the binding of logical variables to objects is very
general and it has been used in the literature for various
purposes. Details will be provided along the paper (see e.g.
Sects. 2.3 and 4.3).

Our contribution. In the paper, we analyze decidability
and complexity issues of Constraint LTL augmented with
the freeze operator. The temporal operators we consider are
restricted to the standard future-time operators “until” and
“next” (no past-time operators). CLTL↓(D) denotes such
a logic over the concrete domain D. A concrete domain is
composed of a non-empty set equipped with a family of re-
lations. The atomic formulae of CLTL↓(D) are based on
constraints over D with the ability to compare values of
variables at states of bounded distance (see details in the
body of the paper) as done in [41, 4, 19, 25]. First, we show
that when the underlying domain D is finite, CLTL↓(D)
satisfiability is in EXPSPACE. If moreover D has at least
two elements with the equality predicate, then CLTL↓(D)
is EXPSPACE-hard. As a corollary, CLTL↓(D,=) satisfia-
bility is EXPSPACE-complete when |D| ≥ 2 and D is finite
(Sect. 3.2). This witnesses an exponential blow-up since
satisfiability for the freeze-free fragment CLTL(D) when D
is finite can be easily shown in PSPACE as plain LTL.

When the domain D is infinite, we show that
CLTL↓(D,=) is undecidable which is the main result of the
paper (Sect. 4). This is quite surprising since the language
of constraints is poor (only equality tests) and only future-
time operators are used unlike what is shown in [18, Sect.
7] with past-time operators. Our proof, based on a reduction
from the recurring problem for 2-counter machines, refines
this result: CLTL↓(D,=) is Σ1

1-complete even if only one
flexible variable and two rigid variables (used to record the
values of flexible variables) are involved. Hence, in spite
of the very basic Presburger constraints in CLTL↓(N,=),

satisfiability is Σ1
1-complete. Even if the language of con-

straints is minimal, decidability of CLTL↓(D) can be ob-
tained either at the cost of syntactic restrictions or by assum-
ing semantical constraints (as in the logic TPTL [2] where
the freeze quantifier can only record the value of a mono-
tonic variable, namely time).

In order to regain decidability, we introduce the flat frag-
ment of CLTL↓(D) which contains the freeze-free fragment
CLTL(D) and we show that there is a logspace reduction
from the flat fragment of CLTL↓(D) into CLTL(D) assum-
ing that the equality predicate belongs to D. As a corol-
lary, we obtain that the flat fragments of CLTL↓(Z, <, =
) and CLTL↓(R, <, =) are PSPACE-complete (Sect. 3.2).
Flat fragments of plain LTL versions have been studied
in [14, 13] (see also in [32, Sect. 5] the design of a flat log-
ical temporal language for model-checking pushdown ma-
chines) and our definition of flatness takes advantage in a
non-trivial way of the polarity of “until” subformulae oc-
curring in a formula.

Along the paper, we explicitly consider the satisfiabil-
ity problem but as shown in Sect. 2.2, our results extend
to the model-checking problem of the logics we consider.
Moreover, the language of CLTL↓(D) extends naturally
what is done for the freeze-free fragment CLTL(D) and we
show that CLTL↓(D) increases strictly the expressive power
(Proposition 1). However, we prove that significant frag-
ments of CLTL↓(D) are as expressive as the full language,
for instance by recording only values of flexible variables
at the current state or by allowing only rigid variables in
atomic formulae.

Finally, apart from the technical contributions of the pa-
per, we provide a comparison of several works dealing with
freeze-like operators such as in first-order quantification,
in timed LTL, in hybrid logics with reference pointers, to
quote a few examples.

Related work. Complexity results for Constraint LTL
over concrete domains can be found in [41, 4, 19, 25, 18]
whereas decidability and complexity issues for LTL over
Presburger constraints have been studied for instance in [8,
13, 18]. Most decision procedures in the above-mentioned
works are automata-based whereas undecidability proofs
often rely on an easy encoding of the halting problem for
Minsky machines.

Similar issues for real-time and modal logics equipped
with the freeze operator have been considered in [2, 28,
27, 11]. In spite of its rich language of constraints, TPTL
model-checking is decidable [2] because of the restricted
use of the freeze operator. By contrast, the following vari-
ants are undecidable: without the monotonicity condition
on time sequences or, with the addition of the multiplica-
tion by 2 or, by replacing the time domain N by Q (see also
in [28] the encoding of classical logic into some half-order

2



modal logic). On the side of Constraint LTL, LTL over inte-
ger periodicity constraints augmented with the freeze oper-
ator is shown EXPSPACE-complete [18] but CLTL(N, <, =)
with past-time operator F−1 and ↓ is undecidable [18].

Variable-binding mechanism similar to the freeze quanti-
fier can be found in hybrid logics, see e.g. [26, 3, 22] where
↓x φ(x) holds true iff φ(x) holds true when the proposi-
tional variable x is interpreted as a singleton containing the
current state. The downarrow binder in such hybrid logics
records the value of the current state. Similarly, in temporal
logic with forgettable past [34], the effect of the Now oper-
ator is that the origin of time takes the value of the current
state: the states before the current state are forgotten. Iden-
tical mechanisms are used in navigation logics for object
structures, see e.g. [16] and in half-order dynamic temporal
logics interpreted over traces from sequence diagrams [12].

First-order temporal logics [17, 42, 29, 24] can also sim-
ulate the freeze quantifier which is not surprising since
freeze quantification is first-order in nature. In Sect. 4.3 we
provide more details about the way to encode CLTL↓(N,=)
into first-order temporal logic T L over the linear structure
〈N, <〉 (with equality) introduced in [24, Chapter 11].

In [9, 10], data languages are defined as sets of finite data
words in (Σ×D)∗ where Σ is a finite alphabet and D is an
infinite domain, generalizing the concept of timed words.
Models of the logic CLTL↓(N,=) restricted to a single flex-
ible variable are indeed infinite data words over a singleton
alphabet. Similar models are studied in [15, 7] with moti-
vations stemming from query languages for semistructured
data. The only built-in constraint is equality between data,
denoted by ∼. First-order logic over such finite structures
restricted to the predicate =, < (on positions) and ∼ is un-
decidable with three variables [15, 7] and is equivalent to
multicounter automata with two variables [7]. Observe that
the above formalisms are generally able to encode past-time
operators unlike the logics presented in this paper.

Structure of the paper. In Sect. 2, we present the vari-
ants of Constraint LTL with the freeze quantifier, expressiv-
ity issues as well as the satisfiability and model-checking
problems of interest. In Sect. 3, we show decidability and
complexity results when the underlying concrete domain is
finite or when the flat fragment is considered. In sect. 4, we
show that CLTL↓(N,=) is Σ1

1-complete. Sect. 5 concludes
the paper by enumerating a few open problems about decid-
ability (restrictions over the logical language, restrictions
over the intepretation of variables).

2 Constraint LTL with the freeze quantifier

2.1 Syntax and semantics

A constraint system is a set, called the domain, with a
family of relations on this set. Let D = (D, (Ri)i∈I) be
a constraint system. We define the logic CLTL↓(D) by
giving its syntax and semantics.

Syntax. Let FleVarSet and RigVarSet be countable sets
of variables which are respectively called flexible variables
and rigid variables. Terms are given by the grammar:
t ::= X · · ·X︸ ︷︷ ︸

n times

x | y where x is in FleVarSet and y is

in RigVarSet. We use Xn as an abbreviation for X · · ·X︸ ︷︷ ︸
n times

.

Formulae are given by the grammar:

c ::= R(t1, . . . , tn)
φ ::= c | ¬φ | φ1 ∧ φ2 |

Xφ | φ1Uφ2 |↓y=Xnx φ

where R ranges over the predicate symbols associated to
the relations in (Ri)i∈I , x over FleVarSet, and y over
RigVarSet. Note that we use the same symbol X for de-
noting either the nth next value Xnx of the variable x or
the formula Xφ. We define the Boolean constants, and the
temporal operators ‘eventually’ and ‘always’, as the follow-
ing abbreviations: ( def= R(t1, . . . , tn) ∨ ¬R(t1, . . . , tn),
Fφ

def= (Uφ, ⊥ def= R(t1, . . . , tn) ∧ ¬R(t1, . . . , tn), and
Gφ

def= ¬F¬φ.
Let FleVars(φ) and RigVars(φ) denote the sets of all

flexible and rigid (respectively) variables which occur in φ.

Freeze-free fragment. CLTL(D) is the fragment of
CLTL↓(D) with no rigid variables and hence without
freeze quantifier.

Flat fragment. We say that the occurrence of a subformula
in a formula is positive if it occurs under an even number
of negations, otherwise it is negative. The flat fragment of
CLTL↓(D) is the restriction of CLTL↓(D) where, for any
subformula φ1Uφ2, if it is positive then ↓ does not occur in
φ1, and if it is negative then ↓ does not occur in φ2.

More precisely, a formula ϕ of the flat fragment of
CLTL↓(D) is given by the grammar:

ϕ ::= c | ¬ϕ− | ϕ1 ∧ ϕ2 | Xϕ | ψUϕ |↓y=Xnx ϕ
ϕ− ::= c | ¬ϕ | ϕ−1 ∧ ϕ−2 | Xϕ− | ϕ−Uψ |↓y=Xnx ϕ−
ψ ::= c | ¬ψ | ψ1 ∧ ψ2 | Xψ | ψ1Uψ2

Subformulae ϕ are positive, whereas subformulae ϕ− are
negative.
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Semantics. A model σ : N → (FleVarSet → D) is a se-
quence of mappings from FleVarSet to D. For any i ∈ N,
we write σi for the model defined by σi(j) = σ(i + j)
for every j ≥ 0. An environment ρ is a mapping from
RigVarSet to D. We write ρ[x -→ v] for the environment
mapping x to v, and any other variable y to ρ(y). The se-
mantics of terms is given by:

!Xnx"σ,ρ = σ(n)(x) if x is in FleVarSet!y"σ,ρ = ρ(y) if y is in RigVarSet

The semantics of formulae is given by the following sat-
isfaction relation :

• σ |=ρ R(t1, . . . , tn) iff (!t1"σ,ρ , . . . , !t2"σ,ρ) ∈ R;

• σ |=ρ ¬φ iff σ .|=ρ φ;

• σ |=ρ φ1 ∧ φ2 iff σ |=ρ φ1 and σ |=ρ φ2;

• σ |=ρ Xφ iff σ1 |=ρ φ;

• σ |=ρ φ1Uφ2 iff there exists i such that σi |=ρ φ2 and
for all j < i, σj |=ρ φ1;

• σ |=ρ↓y=Xnx φ iff σ |=ρ[y %→σ(n)(x)] φ,

where we write σ .|=ρ φ for not σ |=ρ φ. Note that we use
the same symbol R for denoting a relation symbol and its
meaning as a relation. Assuming that the domain D is non-
trivial (with at least two elements and non-trivial relations),
propositional variables can be easily encoded by constraint
terms.

2.2 Satisfiability and model-checking problems

We recall below the problems we are interested in.

Satisfiability problem for CLTL↓(D):
instance: a CLTL↓(D) formula φ,
question: is there a model σ and an environment ρ such

that σ |=ρ φ?

Without loss of generality we can assume that no free rigid
variable occurs in φ which means that ρ is not essential
above. As usual, the occurrence of a rigid variable x is
free in φ if it is not in the scope of a freeze quantifier with
rigid variable x. Similarly, the model-checking problem
rests on D-automata which are constraints automata. A
D-automaton A is simply a Büchi automaton over the
infinite alphabet composed of Boolean combinations of
atomic CLTL↓(D) formulae with terms of the form x
and Xx (x ∈ FleVarSet). In a D-automaton, letters
on transitions induce constraints between the variables
of the current state and the variables of the next state as
done in [13]. Alternatively, labelling the transitions by
CLTL↓(D) formulae (as done in [40]) would not modify
essentially the decidability status of model-checking

problems considered in this paper.

Model-checking problem for CLTL↓(D):
instance: A D-automaton A and a CLTL↓(D) formula φ,
question: are there a symbolic ω-word v = φ0, φ1, . . . ac-

cepted by A, a model σ (a realization of v) and an
environment ρ such that σ |=ρ φ and for every i ≥ 0,
σi |=ρ φi?

It is not difficult to show that as soon as D is non-trivial
the satisfiability problem and the model-checking problem
are reducible to each other in logspace following techniques
from [38]. In the sequel, we prove results for the satisfia-
bility problems but one has to keep in mind that our results
extend to the model-checking problem.

2.3 Expressive power

TPTL. The class of logics CLTL↓(D) defined above is
quite general and it is not difficult to show that the real-time
logic TPTL is exactly the fragment of the logic CLTL↓(D)
where

• D = N and the only flexible variable is t (time);

• the predicates of D are the following:

– (x ≤ c)c∈Z, (x ≤ y + c)c∈Z,
– (x ≡d c)c,d∈N, (x ≡d y + c)c,d∈N

where ≡d is equality modulo d;

• the formulae are of the form G(t ≤ Xt) ∧ GF(t <
Xt) ∧ φ with the freeze quantifier used with bindings
of the form ↓x=t.

The decidability of TPTL [2] is mainly due to the following
semantical restriction: t is monotonic.

The freeze operator strictly increases the expressive
power. The addition of the freeze quantifier really en-
hances the expressive power of CLTL(D). For instance,
the formula φx∞

def= G ↓y=x XGx .= y states that the
variable x never takes twice the same value in a linear-
time model. This is interesting for the verification of cryp-
tographic protocols, nonces are variables that have to be
fresh, i.e. they cannot take twice the same value. Similarly,
in the context of spatio-temporal logics, Wolter and Za-
kharyashev [41, Sect. 7] advocate the need to consider op-
erators expressing constraints of the form

∧
i∈N R(x,Xiy)

and
∨

i∈N R(x,Xiy). For instance,
∧

i∈N R(x,Xiy) can be
expressed simply in our formalism by the formula ↓x′=x

GR(x′, y). This formula is in the flat fragment, which im-
plies for instance nice computational properties, see e.g.
Sect. 3.2.
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In order to formally show that the freeze operator is pow-
erful, we show that CLTL↓(N,=) is strictly more expres-
sive than its freeze-free fragment CLTL(N,=). There is a
formula φ in CLTL↓(N,=) (with no free rigid variable) for
which there is no formula ψ in CLTL(N,=) such that for all
models σ and environments ρ, σ |=ρ φ iff σ |=ρ ψ. Since
no free rigid variable occurs in φ and ψ, the environment ρ
is irrelevant here and we write σ |= φ instead of σ |=ρ φ.
First, we show the following property.

Lemma 1 Every satisfiable formula in CLTL(N,=) has a
model with a finite amount of values in the whole model.

Proof. Let φ be a formula in CLTL(N,=) with variables in
{x1, . . . , xn} and k be equal to 1 plus the maximal j such
that Xjxi occurs in φ for some flexible variable xi. Let C
be the finite set of constraints of the form Xj1xi1 = Xj2xi2

with 0 ≤ j1, j2 ≤ k − 1 and i1, i2 ∈ {1, . . . , n}.
We define a total ordering on {1, . . . , n}×N as follows:

〈i, j〉 < 〈i′, j〉 iff j < j′ or (j = j′ and i < i′). Given
a model σ : N → (FleVarSet → N), we build a model
σ′ : N → (FleVarSet → {1, . . . , k × n}) such that σ |= φ
iff σ′ |= φ.

If x is a flexible variable not occurring in φ, σ′(i)(x) = 1
for every i ≥ 0. Otherwise σ′(0)(x1) = 1 (〈1, 0〉 is
minimal wrt <). Now suppose that for every 〈i′, j′〉 <
〈i, j〉, σ′(j′)(xi′) has been already defined. We shall define
σ′(j)(xi). If for some 〈i′, j′〉 in {〈i′′, j′′〉 : 0 ≤ j − j′′ ≤
k − 1, 1 ≤ i′′ ≤ n, 〈i′′, j′′〉 < 〈i, j〉}, σ(j′)(xi′) =
σ(j)(xi) then σ′(j)(xi) takes the value σ(j′)(xi′). Oth-
erwise, σ′(j)(xi) takes an arbitrary value from the set

{1, . . . , k × n}\
{σ(j′′)(xi′′) : 0 ≤ j − j′′ ≤ k − 1, 1 ≤ i′′ ≤ n,

〈i′′, j′′〉 < 〈i, j〉}
which is always possible since the second set has strictly
less that k × n elements. One can show that for all c ∈ C
and i ≥ 0, σ

′i |= c iff σi |= c. Hence, σ |= φ iff σ′ |= φ. !

Proposition 1 There is no formula in CLTL(N,=) equiva-
lent to φx∞ ∈ CLTL↓(N,=).

Indeed, every satisfiable formula in CLTL(N,=) admits
a model in which the variable x takes a finite amount of
values by Lemma 1.

Equivalent syntactic restrictions. We now show that ex-
pressiveness of CLTL↓(D) does not change if we restrict
the freeze quantifier to refer only to flexible variables in the
current state, or if we restrict atomic formulae to contain
only rigid variables, or with both restrictions. Therefore,
those restrictions could have been incorporated into the def-
inition of the logic. However, we chose to allow terms of
the form Xnx with flexible x in atomic formulae in order

to have CLTL(D) as the freeze-free fragment; and to allow
the freeze quantifier to refer to the future so that formulae
would be closed under substitution of terms.

Proposition 2 For any formula φ of CLTL↓(D), there ex-
ists an equivalent formula φ′ such that:

(i) any occurence of ↓ in φ′ is of the form ↓y=x;

(ii) FleVars(φ′) = FleVars(φ);

(iii) RigVars(φ′) = RigVars(φ).

Proof. By structural induction on φ, it suffices to prove the
statement for formulae of the form ↓y=Xnx φ′ where φ′
satisfies (i).

This can be done by induction on n. The base case n = 0
is trivial. For the inductive step, we use structural induction
on φ′. The most difficult case is φ′ = φ′1Uφ′2. We then
have

↓y=Xn+1x φ′
≡ ↓y=Xn+1x φ′2 ∨ (φ′1 ∧Xφ′)
≡ (↓y=Xn+1x φ′2) ∨ ((↓y=Xn+1x φ′1) ∧X ↓y=Xnx φ′)

and the induction hypotheses apply to each of the three
freeze subformulae. !

Proposition 3 For any formula φ of CLTL↓(D), there ex-
ists an equivalent formula φ′ such that:

• atomic formulae in φ′ contain only rigid variables;

• if any occurence of ↓ in φ is of the form ↓y=x, then the
same is true of φ′;

• FleVars(φ′) = FleVars(φ);

• if k is the maximum number, over all atomic formu-
lae in φ, of distinct terms of the form Xnx with x ∈
FleVarSet, then |RigVars(φ′)| ≤ |RigVars(φ)| + k.

Proof. φ′ is constructed from φ by translating only atomic
subformulae of φ. The translation is as in the following ex-
ample. R(X2x1, y1,X3x2,X2x3, x4, y2, x4), where xi ∈
FleVarSet and yi ∈ RigVarSet, is translated to ↓y3=x4

X2 ↓y4=x1↓y5=x3 X1 ↓y6=x2 R(y4, y1, y6, y5, y3, y2, y3)
where y3, . . . , y6 are fresh rigid variables. !

3 Decidability results

3.1 Finite domain case

In this section, we basically show that, when D is finite
(with at least two elements) and contains the equality pred-
icate, CLTL↓(D) is EXPSPACE-complete. In Theorem 1 be-
low, we establish that EXPSPACE-hardness is very common
when the freeze quantifier is present.
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Theorem 1 Let D be a constraint system with equality
such that the underlying domain D contains at least two
elements. The satisfiability problem for CLTL↓(D) is
EXPSPACE-hard.

Proof. We prove this result by a reduction from an EX-
PSPACE-complete tiling problem (see e.g. [39]). A tile is
a unit square of one of the several tile-types and the tiling
problem we consider is specified by means of a finite set
T of tile-type (say T = {t1, . . . , tk}), two binary rela-
tions H and V over T and two distinguished tile-types
tinit, tfinal ∈ T . The tiling problem consists in deter-
mining whether, for a given number n in unary, the region
[0, . . . , 2n−1]× [0, . . . , k−1] of the integer plane for some
k can be tiled consistently with H and V , tinit is the left
bottom tile, and tfinal is the right upper tile.

Given an instance I = 〈T, tinit, tfinal, n〉 of the tiling
problem, we build a CLTL↓(D) formula φI such that I =
〈T, tinit, tfinal, n〉 has a solution iff φI is CLTL↓(D) satis-
fiable.

We consider the following flexible variables:

• c1, . . . , cn are variables that allow to count until 2n

and x0, x1 are variables that will play the role of
0 and 1, respectively; there are corresponding rigid
variables c′1, . . . , c′n; each element 〈α, i〉 of a row
[0, . . . , 2n − 1] × {i} such that the binary represen-
tation of α is b1 . . . bn, satisfies cj = x0 iff bj = 0 for
every j ∈ {1, . . . , n};

• for t ∈ T , z1
t , z2

t are variables such that Dt := z1
t =

z2
t is the formula encoding the fact that at a certain

position of the integer plane the tile t is present. There
are also rigid variables z1′

t , z2′
t and D′

t := z1′
t = z2′

t ;
• end1, end2 such that END := end1 = end2;

The formula φI is the conjunction of the following for-
mulae:

• ¬END ∧ (¬ENDU(c1 = · · · = cn = x0 ∧GEND))
(the region of the integer plane for the solution is fi-
nite);

• ¬(x0 = x1) ∧G(x0 = Xx0 ∧ x1 = Xx1)
(x0 and x1 behave as different constants);

• G(¬END⇒ ∨
t∈T (Dt ∧

∧
t′ )=t ¬Dt′))

(exactly one tile per element of the plane region);
• F(

∧
1≤i≤n(ci = x1) ∧ ¬END ∧Dtfinal ∧XEND)

(right upper tile);
• ∧

1≤i≤n(ci = x0) ∧Dtinit

(left bottom tile);
• G(

∨
2≤i≤n+1((

∧
i≤j≤n cj = x1) ∧ ci−1 = x0 ∧

¬END) ⇒ (
∧

1≤j≤i−2(cj = Xcj) ∧ Xci−1 = x1 ∧∧
i≤j≤n(Xcj = x0))))

(incrementation of the counters c1, . . . , cn);

• G((¬XEND ∧ c1 = · · · = cn = x1) ⇒ X(c1 = · · · =
cn = x0))
(limit condition for the incrementation of the counters
c1, . . . , cn);

• G(

not the last element of a row︷ ︸︸ ︷
¬(c1 = · · · = cn = x1) ∧¬END ⇒

∧
t∈T (Dt ⇒∨

〈t,t′〉∈H XDt′))
(horizontal consistency);

•

G(¬END ∧
not on the last row︷ ︸︸ ︷

F(X¬END ∧ c1 = . . . = cn = x1) ⇒
↓c′

1=c1 · · · ↓c′
n=cn↓z1′

t1
=z1

t1
↓z2′

t1
=z2

t1

. . . ↓z1′
tk

=z1
tk

↓z2′
tk

=z2
tk

X((¬(c′1 = c1 ∧ · · · ∧ c′n =
cn))U(c′1 = c1 ∧ · · · ∧ c′n = cn ∧

∧
t∈T (D′

t ⇒∨
〈t,t′〉∈V XDt′)))

(vertical consistency).

It is not difficult to show that the instance I =
〈T, tinit, tfinal, n〉 has a solution iff φI is CLTL↓(D) sat-
isfiable. !

This is reminiscent to the EXPSPACE-hardness of Timed
Propositional Temporal Logic (TPTL) [2, Theorem 2],
PLTL+Now (NLTL) [34, Proposition 4.7] and a variant of
the guarded fragment with transitivity [33, Theorem 2]. Our
EXPSPACE-hardness proof is in the same vein since basi-
cally in CLTL↓(D) we are able to count till 2n using only a
number of resources polynomial in n and we can compare
the truth value of atomic formulae in states of “temporal
distance” exactly 2n, whence the reduction of a famous EX-
PSPACE-complete tiling problem.

Our proof is a slight variant of the proof of [18, Theo-
rem 6]: instead of using integer periodicity constraints to
count till 2n, n binary counters are used. Observe also that
the result formula is not flat because of the encoding of ver-
tical consistency.

If we replace U by F, then NEXPTIME-hardness can be
shown by reducing the n×n tiling problem with n encoded
in binary.

Finitess of D allows us to show the decidability of
CLTL↓(D).

Theorem 2 Let D be a finite constraint system. The satisfi-
ability problem for CLTL↓(D) is in EXPSPACE.

Proof. Assume that D = {d1, . . . , dl}. We introduce an
auxiliary constraint system D′ = 〈D,P1, . . . , Pl〉 such that
Pi = {di}. For convenience, we write x = di instead
of Pi(x). We shall show how to reduce the satisfiability
problem for CLTL↓(D) into the satisfiability problem for
CLTL(D′). PSPACE-easiness of CLTL(D′) is not very diffi-
cult to show and it is a direct consequence of [18, Theorem
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4].
We introduce a translation T from CLTL↓(D) formulae into
CLTL(D′) formulae defined as follows:

• T is homomorphic for the Boolean operators and the
temporal operators;

• T(R(α1, . . . , αn)) = (
∨

R(di1 ,...,din )(α1 = di1 ∧· · ·∧
αn = din)).

So far, the translation can be done in polynomial time and
logarithmic space since |D|n is a constant of CLTL↓(D).
The last clause of T is related to the freeze quantifier:

T(↓x′=α ψ) =
∧

di∈D

(α = di) ⇒ T(ψ)x′=di ,

where T(ψ)x′=di is obtained from T(ψ) by replacing ev-
ery occurrence of x′ = dj with j .= i by ⊥ and every
occurrence of x′ = di by (. This step requires an expo-
nential blow up and therefore |T(φ)| is exponential in |φ|.
It is easy to show that φ is CLTL↓(D) satisfiable iff T(φ) is
CLTL(D′) satisfiable. Since T may cause at most an expo-
nential blow up and CLTL(D′) is in PSPACE, we obtain that
CLTL↓(D) satisfiability is in EXPSPACE. !

Our proof can be easily adapted if the freeze quantifier is
replaced by full existential quantifier ∃.

Corollary 1 Let D be a finite constraint system with equal-
ity such that the underlying domain D contains at least
two elements. The satisfiability problem for CLTL↓(D) is
EXPSPACE-complete.

A formula φ ∈ CLTL↓(D) is of ↓-depth k, for some
k ≥ 0 whenever every branch of the formula tree of φ has
at most k freeze quantifiers. For example, the formula ↓x′=x

(y = x′)U ↓x′=z y = x′. is of ↓-heigth 2.

Corollary 2 Let D be a finite constraint system. For every
k ≥ 0, the satisfiability problem for CLTL↓(D) restricted to
formulae of ↓-height k is in PSPACE.

3.2 Flat fragment between CLTL(D) and
CLTL↓(D)

The main result of this section is to show that the freeze
quantifier in the flat fragment of CLTL↓(D) can be encoded
faithfully into CLTL(D). The flatness concept is only re-
lated to occurrences of the freeze quantifier and for in-
stance the formulae of the form φx∞ do not belong to the
flat fragment. By contrast, ¬φx∞ belongs to the flat frag-
ment of CLTL↓(N,=). By Proposition 1, the flat frag-
ment of CLTL↓(N,=) is therefore strictly more expres-
sive than CLTL(N,=) since CLTL(N,=) is closed under

negation. However, as shown below, satisfiability for flat
CLTL↓(N,=) can be reduced in logarithmic space to satisfi-
ability for CLTL(N,=). By analogy, CTL∗ model-checking
can be reduced to LTL model-checking [20] even though
CTL∗ is more expressive than LTL.

We assume that the flexible variables of CLTL↓(D)
are {x0, x1, . . .} and the rigid variables of CLTL↓(D) are
{y0, y1, . . .}. For the ease of presentation, we assume that
the flexible variables of CLTL(D) are composed of the fol-
lowing two disjoint sets: {x0, x1, . . .} and {ynew

0 , ynew
1 , . . .}.

We define below a map u from the flat fragment CLTL↓(D)
into CLTL(D) that is homomorphic for the Boolean and
temporal connectives and such that

• u(c) def= c′ where c′ is obtained from c by replacing
each rigid variable yj by ynew

j ,

• u(↓y=Xnx ψ) def= ynew = Xnx ∧ G(ynew =
Xynew) ∧ u(ψ).

It is easy to show that u(φ) can be computed in logarithmic
space in |φ|.

Proposition 4 Let D be a constraint system with equality.
For any formula φ of the flat fragment of CLTL↓(D), φ is
CLTL↓(D) satisfiable iff u(φ) is CLTL(D) satisfiable.

Proof. Given a model σ of CLTL↓(D), an environment ρ
and a formula φ we say that the model σ′ of CLTL(D)
agrees with σ, ρ and φ iff for all i, j ≥ 0, σ(i)(xj) =
σ′(i)(xj) and for all free rigid variable yj in φ and i ≥ 0,
σ′(i)(ynew

j ) = ρ(yj).
We shall use the following properties:

• u(ψ) = ψ if ψ belongs to CLTL(D).

• If σ′ agrees with σ, ρ and ψ then (σ′)i agrees with σi,
ρ and ψ for every i ≥ 0.

Given the occurrence of a subformula ψ in φ with posi-
tive [resp. negative] polarity, we write the sign sψ to denote
the empty string [resp. ¬]. By abusing notation, we do not
distinguish subformulae from occurrences.

We shall show by structural induction that for any occur-
rence of a subformula ψ in φ, for all models σ of CLTL↓(D)
and environment ρ, σ |=ρ sψ ψ iff there is σ′ that agrees
with σ, ρ and ψ such that σ′ |= sψ u(ψ). Statement of the
lemma is then immediate.

The base case with atomic formulae and the cases in the
induction step with ¬, ∧ and X are by an easy verification.
By way of example, we treat the case with ψ = ¬ψ′ with
negative polarity. So ψ′ occurs with positive polarity. Let σ
be a model and ρ be an environment such that σ |=ρ ¬¬ψ′.
The statements below are equivalent:

• σ |=ρ ¬¬ψ′,
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• σ |=ρ ψ′,

• there is σ′ that agrees with σ, ρ and ψ′ such that σ′ |=
u(ψ′) (by (IH) and change of polarity),

• there is σ′ that agrees with σ, ρ and ψ′ such that σ′ |=
¬u(¬ψ′) (by definition of u).

Let us treat the remaining cases.
Case 1: ψ = ψ1Uψ2 with positive polarity.
Since φ belongs to the flat fragment, we have ψ1 = u(ψ1).
Let σ be a model and ρ be an environment such that σ |=ρ

ψ. The statements below are equivalent:

• σ |=ρ ψ,

• there is i ≥ 0 such that σi |=ρ ψ2 and for every j < i,
σj |=ρ ψ1,

• there is σ′ that agrees with σ, ρ and ψ2 such that
(σ′)i |= u(ψ2) and for every j < i, (σ′)j |= u(ψ1)
(by (IH), ψ1 = u(ψ1) and, σ and σ′ agree on flexible
variables of ψ1),

• there is σ′ that agrees with σ, ρ and ψ such that σ′ |=
u(ψ1)Uu(ψ2) (ψ1 has no free rigid variable).

Case 2: ψ = ψ1Uψ2 with negative polarity.
Since φ belongs to the flat fragment, we have ψ2 = u(ψ2)
and both ψ1 and ψ2 have negative polarity. Let σ be a model
and ρ be an environment such that σ |=ρ ψ. The statements
below are equivalent:

• σ |=ρ ψ,

• either there is j ≥ 0 such that σj |=ρ ¬ψ1 and for
every j ≤ i, σi |=ρ ¬ψ2 or for every i ≥ 0, σi |=ρ

¬ψ2,

• either there is σ′ that agrees with σ, ρ and ψ1 such that
there is j ≥ 0 such that (σ′)j |= ¬u(ψ1) and for every
j ≤ i, (σ′)i |= ¬u(ψ2) (by (IH) and ψ2 = u(ψ2)) or
there is σ′ that agrees with σ, ρ and ψ2 such that for
every i ≥ 0, (σ′)i |= ¬u(ψ2) (by (IH)),

• there is σ′ that agrees with σ, ρ and ψ1Uψ2 such that
either there is j ≥ 0 such that (σ′)j |= ¬u(ψ1) and
for every j ≤ i, (σ′)i |= ¬u(ψ2) or for every i ≥ 0,
(σ′)i |= ¬u(ψ2) (ψ2 has no free rigid variables),

• there is σ′ that agrees with σ, ρ and ψ1Uψ2 such that
σ′ |= ¬(u(ψ1)Uu(ψ2)).

Case 3: ψ =↓y=Xnx ψ′.
Let σ be a model and ρ be an environment for sψ and ψ.
The statements below are equivalent:

• σ |=ρ sψ ψ,

• σ |=ρ[y %→σ(n)(x)] sψ ψ′,

• there is σ′ that agrees with σ, ρ[y -→ σ(n)(x)] and ψ′
such that σ′ |= sψ u(ψ′) (by (IH)),

• there is σ′ that agrees with σ, ρ[y -→ σ(n)(x)] and
ψ′ such that σ′ |= sψ u(ψ′) and σ′ |= G(ynew =
Xynew) ∧ ynew = Xnx (y free in ψ′).

• there is σ′ that agrees with σ, ρ and ψ such that σ′ |=
sψ u(ψ′) ∧G(ynew = Xynew) ∧ ynew = Xnx (ψ has
less free rigid variable than ψ′). !

Corollary 3 For every constraint system D equipped with
equality predicate, decidability of CLTL(D) implies the de-
cidability of the flat fragment of CLTL↓(D).

Since CLTL(〈Z, <, =〉), CLTL(〈N, <, =〉) and
CLTL(〈R, <, =〉) are PSPACE-complete [19], we can
establish the following corollary.

Corollary 4 Flat fragments of CLTL↓(〈Z, <, =〉),
CLTL↓(〈N, <, =〉), CLTL↓(〈R, <, =〉), and CLTL↓(D)
with D finite are PSPACE-complete.

4 Undecidability results

In this section, we shall prove that, if the domain is infi-
nite, and if we do not restrict to flat formulae, the satisfiabil-
ity problem for CLTL↓(D) is undecidable even if we only
have the equality predicate. More precisely, Theorem 3 be-
low is a stronger result, stating that satisfiability is Σ1

1-hard,
even restricted to formulae with 1 flexible variable and at
most 2 rigid variables. (An exposition of the analytical hi-
erarchy can be found in [36].) A corollary of Σ1

1-hardness
is that the logic cannot be recursively axiomatized.

4.1 Comparison with other undecidability results

In [2, Theorem 5], Σ1
1-hardness of satisfiability for TPTL

without the monotonicity condition on time sequences is es-
tablished. By Propositions 2 and 3, CLTL↓(N,=) restricted
to one flexible variable can be seen as the fragment of TPTL
where there are no atomic propositions, and where the only
operation on time is equality. Moreover, it is straightfor-
ward to see that Theorem 3 below still holds when satisfia-
bility is restricted to models which contain infinitely many
values, which is equivalent to the progress condition when
the domain is N. Therefore, a corollary of our result is the
following strengthening of [2, Theorem 5]: satisfiability for
TPTL without the monotonicity condition remains Σ1

1 even
without atomic propositions and with only equality con-
straints. (The proof of [2, Theorem 5] uses arithmetic on
time values.)

As explained in Sect. 4.3, CLTL↓(N,=) can be naturally
translated into first-order temporal logic T L over the lin-
ear structure 〈N, <〉 with equality introduced in [24, Chap-
ter 11]. Undecidability of the monodic fragment of this
logic has been established in [42] by reducing the finite
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validity problem for classical logic known to be undecid-
able by Trakhtenbrot’s Theorem. A refinement of this result
is shown in [17] to the fragment restricted to two individ-
ual variables and monadic predicate symbols. The proof is
based on a reduction from halting problem for Minsky ma-
chines by coding the values of counters by the cardinality
of the interpretations of monadic predicate symbols.

The models of Quantified Propositional Temporal Logic
with Repeating (RQPTL) introduced in [23] can be en-
coded by CLTL↓(N,=) formulae unlike the second-order
quantification in the language. However, the variant logic
RHLTLn [23, Sect. 4] is equivalent to CLTL↓(N,=)
with one flexible variable and n rigid variables except that
RHLTLn does not have U but has F, F−1 and X−1. The-
orem 3 and Σ1

1-hardness of RHLTL2 [23, Corollary 1] are
complementary results.

Our encoding of configurations in 2-counter machines is
similar to the one in [15, Sect. 7] to show undecidability
of an emptiness problem for a class of two-ways register
automata. As a corollary of [15, Sect. 7] and of the proof of
Theorem 3 below, CLTL↓(N,=) augmented with the past-
time operator “since” but restricted to a single rigid variable
is Σ1

1-complete.

4.2 Σ1
1-completeness

The following proposition complements the main result
in this section, and states that, for countable and computable
constraint systems D, satisfiability for CLTL↓(D) is in Σ1

1.
Hence, for a countably infinite domain, the problem in The-
orem 3 is Σ1

1-complete.

Proposition 5 Suppose D is a countable set, and (Ri)i∈I

is a family of computable relations on D. The satisfiability
problem for CLTL↓(D, (Ri)i∈I) is in Σ1

1.

Proof. Let φ be a formula of CLTL↓(D, (Ri)i∈I). We
can assume FleVarSet = FleVars(φ) and RigVarSet =
RigVars(φ). Let n = |FleVarSet| and m = |RigVarSet|.
Any model σ : N → (FleVarSet → D) can be encoded
by functions f1, . . . , fn : N → N, and any environment
ρ : RigVarSet → D as an m-tuple a1, . . . , am : N. A
first-order predicate on f1, . . . , fn and a1, . . . , am which
expresses that σ |=ρ φ is routine to construct by structural
recursion on φ. We conclude that satisfiability of φ can be
expressed by a Σ1

1-sentence. !

We shall prove that the satisfiability problem for a frag-
ment of CLTL↓(D,=) is Σ1

1-hard by reducing from the Re-
currence Problem for nondeterministic 2-counter machines,
which was shown to be Σ1

1-hard in [2, Section 4.1].
A nondeterministic 2-counter machine M consists of

two counters C1 and C2, and a sequence of n ≥ 1 instruc-
tions, each of which may increment or decrement one of the
counters, or jump conditionally upon of the counters being

zero. After the execution of a non-jump instruction, M pro-
ceeds nondeterministically to one of two specified instruc-
tions. Therefore, the lth instruction is written as one of the
following:

l : Ci := Ci + 1; goto l′ or goto l′′
l : Ci := Ci − 1; goto l′ or goto l′′
l : if Ci = 0 then goto l′ else goto l′′

We represent the configurations of M by triples
〈l, c1, c2〉, where 1 ≤ l ≤ n, c1 ≥ 0, and c2 ≥ 0 are the
current values of the location counter and the two counters
C1 and C2, respectively. The consecution relation on con-
figurations is defined in the obvious way, where decrement-
ing 0 yields 0. A computation of M is an infinite sequence
of related configurations, starting with the initial configu-
ration 〈1, 0, 0〉. The computation is recurring if it contains
infinitely many configurations with the value of the location
counter being 1.

The Recurrence Problem is to decide, given a nondeter-
ministic 2-counter machine M , whether M has a recurring
computation. This problem is Σ1

1-hard.

Theorem 3 Suppose D is an infinite set. The satisfia-
bility problem for formulae φ of CLTL↓(D,=) such that
|FleVars(φ)| = 1 and |RigVars(φ)| ≤ 2 is Σ1

1-hard.

Proof. Suppose M is a nondeterministic 2-counter ma-
chine. We construct a formula φM of CLTL↓(D,=) such
that |FleVars(φ)| = 1, |RigVars(φ)| ≤ 2, and φM is sat-
isfiable iff M has a recurring computation. The basis of
the construction is an encoding of computations of nonde-
terministic 2-counter machines by models of CLTL↓(D,=)
with one flexible variable, i.e. by infinite sequences of el-
ements of D. As in the proofs of [2, Theorems 6 and
7], which show Σ1

1-hardness of satisfiability of formulae
of TPTL extended with either multiplication by 2 or dense
time, we shall encode the value of a counter by a sequence
of that length. However, much further work is needed in
this proof because the only operation we have on elements
of D is equality.

Let n be the number of instructions in M . We encode a
configuration 〈l, c1, c2〉 by a sequence of elements of D of
the form

ddd′d . . . d′ . . .︸ ︷︷ ︸
n

f1
1 . . . f1

c1
eee′e′′f2

1 . . . f2
c2

where:

(i) the only two pairs of consecutive elements which are
equal are dd and ee, and also f2

c2
is distinct from the

first element in the encoding of the next configuration;

(ii) e .= e′′;
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(iii) after the first 4 elements, there is a sequence of n ele-
ments, and only the lth equals d′;

(iv) f i
1, . . . , f i

ci
are mutually distinct, for each i.

We write startd∨e to denote the formula x = X1x stat-
ing that the current state is an occurrence of either dd or
ee. We write startd [resp. starte] to denote the formula
startd∨e∧x = X3x [resp. startd∨e∧x .= X3x] stating the
current state is a first occurrence of d [resp. e] in dd [ee].

The formula φM is

φinit
n ∧ φglob

n ∧ φ1
M ∧ · · · ∧ φn

M ∧ φrec

where the first two conjuncts state that the model is a con-
catenation of configuration encodings which satisfy (i)–(iv)
above, and that it begins with an encoding of the initial con-
figuration 〈1, 0, 0〉. Their definitions are given in Figure 1.

For any l ∈ {1, . . . , n}, φl
M states that, whenever the

model contains an encoding of a configuration 〈l, c1, c2〉,
then the next encoding is of a configuration which is ob-
tained by executing the lth instruction.

Consider the most complex case:

l : C2 := C2 − 1; goto l′ or goto l′′

The formula φl
M needs to state that, whenever the location

counter is l, C1 remains the same, C2 either remains 0 or is
decremented, and the next value of the location counter is
either l′ or l′′:

φl
M

def= G((startd ∧X2x = Xl+3x) ⇒
Xn+4(χ1

eq ∧ (¬startd∨eU(starte ∧
X4(χ2

dec ∧ (¬startd∨eU(startd ∧
(X2x = Xl′+3x ∨X2x = Xl′′+3x))))))))

The formula χ2
dec given in Figure 2 specifies that, if the

current value of C2 is 0 or 1, then the next value of C2 is 0;
and if not, then the next encoding of the value of C2 equals
the current encoding with the last element removed. The
latter is specified as the following conjunction:

(A) the first element of the current encoding equals the first
element of the next encoding, and

(B) for any consecutive pair y and y′ of elements in the
current encoding such that y′ is not the last element,
the first occurence of y in the next encoding is followed
by y′, and

(C) the element before the last in the current encoding is
the last element in the next encoding.

The formula χ1
eq , which specifies that the value of C1

remains the same, is defined similarly.

Definitions of φl
M for other forms of instruction use the

same machinery. For incrementing a counter, it is not nec-
essary to specify that the additional element in the next en-
coding is distinct from the rest, because that is ensured by
φglob

n .
Finally, φrec states that the model encodes a recurring

computation:

φrec def= GF(startd ∧X2x = X4x) !

By adapting the proof of Theorem 3, one can show that
the variant of CLTL↓(D,=) over models that are finite
words as those considered in [9, 7] is also undecidable by
encoding the halting problem for Minsky machines.

4.3 One rigid variable and monodic first-order
temporal logics

The decidability status of CLTL↓(N,=) restricted to one
rigid variable is still open (the proof of Theorem 3 uses ex-
actly two rigid variables) which corresponds exactly to con-
sider formulae of ↓-height 1. More precisely, CLTL↓(N,=)
restricted to one rigid variable and one flexible variable
is open: CLTL↓(N,=) restricted to one rigid variable can
be reduced to this fragment. One way to show decid-
ability of this fragment would be to reduce it to a decid-
able fragment of some first-order temporal logic. For in-
stance, CLTL↓(N,=) satisfiability can be reduced to first-
order temporal logic T L over the linear structure 〈N, <〉
introduced in [24, Chapter 11]. Indeed, to each flexible
variable x one associates a monadic predicate symbol Px

in such a way that Px is interpreted as the singleton set
containing the value of x and the translation of the for-
mula ↓x′=Xx φ is the T L formula ∃x′ XPx(x′) ∧ φ′
where φ′ is the translation of φ. The translation of the
Boolean and temporal operators is performed homomorphi-
cally whereas y = Xz with y, z ∈ FleVarSet is for in-
stance translated into ∃x Py(x) ∧XPz(x). One needs also
to be able to express that at every state Px is interpreted
by a singleton which can be easily encoded by the formula
G(∀z, z′ Px(z) ∧ Px(z′) ⇒ z = z′ ∧ ∃z Px(z)). It is
then easy to check that the translation falls into the monodic
fragment of T L whenever the CLTL↓(N,=) formula is of
↓-height 1. We recall that in the monodic fragment, any
subformula of the form Xφ, φ1Uφ2, Fφ, Gφ has at most
one free individual variable.

Even though monodic first-order temporal logic over the
linear structure 〈N, <〉 is decidable [30], its extension with
equality is not [42] and we need equality in the translation
process in a substantial way. It is then easy to check that
the translation falls into the monodic fragment of T L with
only two individual variables and monadic predicate sym-
bols whenever the CLTL↓(N,=) formula is of ↓-height 1.
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φinit
n

def= startd ∧X2x = X4x ∧Xn+4(starte ∧X4(startd∨e))

φglob
n

def= G(startd ⇒ ψ1
n ∧ starte ⇒ ψ2

n)

ψ1
n

def=

in dd′d ... d′ ... two consecutive values are distinct︷ ︸︸ ︷(
n+3∧
i=1

Xix .= Xi+1x

)
∧

in ... d′ ... exactly one value equals d′︷ ︸︸ ︷ n∨
l=1

X2x = Xl+3x ∧
l−1∧

j=1

X2x .= Xj+3x ∧
n∧

j=l+1

X2x .= Xj+3x

∧

f1
1 ...f1

c1
mutually distinct︷ ︸︸ ︷

Xn+4(ψdistU starte)

ψ2
n

def=

(
3∧

i=1

Xix .= Xi+1x

)
∧

f2
1 ...f2

c2
mutually distinct︷ ︸︸ ︷

X4(ψdistU startd)

ψdist def= ¬startd∨e∧ ↓y=x X((¬startd∨e ∧ x .= y)Ustartd∨e)

Figure 1.

However, this very fragment of T L is also undecidable [17].
Hence, one way to show decidability of CLTL↓(N,=) re-
stricted to one rigid variable would be to show the decid-
ability of the monodic and monadic fragment of T L with
equality, with only two individual variables and further re-
stricted to formulae such that any subformula that contains
two distinct free variables has no temporal operator (unlike
formulae used in the undecidability proof in [17]). It would
forbid formulae of the form (∀z, z′ XP (z) ∧XP (z′)) that
however still belong to the monodic fragment and it would
allow formulae of the form G(∀z, z′ Px(z)∧Px(z′) ⇒ z =
z′ ∧ ∃z Px(z)) needed to enforce that Px is interpreted as a
singleton.

5 Conclusion

In this paper, we have shown that adding the freeze oper-
ator to CLTL(D) leads to undecidability as soon as the un-
derlying domain is infinite and the equality predicate is part
of D. As illustrated in the paper, most of related work deal-
ing with undecidable logics having a binding-mechanism
similar to the freeze quantification can encode past-time op-
erators or has constraints richer than equality. The logic
CLTL↓(D) is EXPSPACE-complete for most of finite D. In
order to design a specification language with LTL temporal
operators and the freeze quantifier that admits a decidable
model-checking problem, syntactic restrictions could be a
reasonable solution. Typically, the existence of a logspace

reduction from flat fragment of CLTL↓(D) into CLTL(D)
when equality predicate is present leads us to believe that
our flatness criterion is most relevant. However, some nat-
ural syntactic restrictions have not been considered in the
paper and the decidability status of the fragments below is
open (with D infinite):

• fragment of CLTL↓(D,=) where the operator U is re-
stricted to G,

• fragment of CLTL↓(D,=) with one rigid variable and
one flexible variable,

• fragment of CLTL↓(D,=) restricted to formulae of the
form φ1 ∧ φ2 where φ2 is freeze-free and φ1 is a con-
junction of formulae of the form G ↓y=x XGx .= y:
freeze operator is then only used to define nonces.

Alternatively, syntactic restrictions can be combined with
restrictions on the interpretations of the variables as it is
the case for TPTL [2]. For instance, which fragments of
CLTL↓(D) are decidable assuming that the freeze opera-
tor is only used in formulae of the form ↓y=x φ where
x is bounded-reversal in the sense of [31]? Monotonic
variables are in particular bounded-reversal. Finally, as-
suming that D does not contain the equality predicate and
the underlying domain is infinite, it is not clear when
CLTL↓(D) is decidable. For instance, the decidability sta-
tus of CLTL↓({0, 1}∗, <) where < is either the prefix re-
lation or the subword relation is open. By contrast, when
〈D,<〉 is an infinite totally-ordered set, a consequence of
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our results is that CLTL↓(D,<) is undecidable since equal-
ity is definable.

Acknowledgements. We are grateful to Deepak D’Souza
for useful discussions and to Frank Wolter for having di-
rected us to related work.
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(C)︷ ︸︸ ︷

((X2¬startd)U(X2startd∧ ↓y=x ¬starteU(starte ∧X4(x .= yU
(x = y ∧ ¬startd ∧X2startd)))))

Figure 2.

[34] F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal
logic with forgettable past. In Proc. 17th IEEE Symp. Logic
in Computer Science (LICS ’02), pages 383–392, 2002.

[35] P. Revesz. Introduction to Constraint Databases. Springer,
New York, 2002.

[36] H. Rogers, Jr. Theory of Recursive Functions and Effective
Computability. McGraw-Hill Book Company, 1967.

[37] P. Schnoebelen. The complexity of temporal logic model
checking. In Advances in Modal Logic, vol. 4, selected pa-
pers from 4th Conf. Advances in Modal Logic (AiML’2002),
Sep.-Oct. 2002, Toulouse, France, pages 437–459, 2003.

[38] A. Sistla and E. Clarke. The complexity of propositional
linear temporal logic. Journal of the ACM, 32(3):733–749,
1985.

[39] P. van Emde Boas. The convenience of tilings. In Com-
plexity, Logic, and recursion Theory, volume 187 of Lecture
Notes in Pure and Applied Logic, pages 331–363, 1997.

[40] P. Wolper. Temporal logic can be more expressive. Informa-
tion and Computation, 56:72–99, 1983.

[41] F. Wolter and M. Zakharyaschev. Spatio-temporal represen-
tation and reasoning based on RCC-8. In KR’00, pages 3–
14, 2000.

[42] F. Wolter and M. Zakharyaschev. Axiomatizing the monodic
fragment of first-order temporal logic. Annals of Pure and
Applied Logic, 118(133–145), 2002.

13


