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Abstract

We provide a resolution-based proof procedure for modal, description and hybrid logic that

improves on previous proposals in important ways. It avoids translations into large unde-

cidable logics, and works directly on modal, description or hybrid logic formulas instead. In

addition, by using the hybrid machinery it avoids the complexities of earlier propositional

resolution-based methods for modal logic. It combines ideas from the method of prefixes used

in tableaux, and resolution ideas in such a way that some of the heuristics and optimizations

devised in either field are applicable.
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1 Introduction

Resolution, originally introduced for first-order logic (FO) in [36], is the most widely
used reasoning method for first-order logic today: most of the available automatic
theorem provers for FO are resolution based. The propositional core of the method
is well-known: to check whether a propositional formula φ is not satisfiable, start by
turning it into clausal form. To this end, we write φ in conjunctive normal form

φ =
∧
l∈L

∨
m∈M

ψ(l,m),

for ψ(l,m) a literal, and let the clause set associated with φ be

ClSet(φ) = {{ψ(l,m) | m ∈M} | l ∈ L}.

Next, we define ClSet∗(φ) as the smallest set containing ClSet(φ) and closed under a
unique, very easy to grasp rule:

(RES)
Cl1 ∪ {N} ∈ ClSet∗(φ) Cl2 ∪ {¬N} ∈ ClSet∗(φ)

Cl1 ∪ Cl2 ∈ ClSet∗(φ)
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If {} ∈ ClSet∗(φ), then φ is not satisfiable. The intuition behind (RES) is as follows:
given that either N or ¬N is always the case in any model, they can be “cut away”
if the sets of clauses are conjoined. The aim of the whole method is to “cut away
everything” and arrive at the empty set.

The elegance of the resolution method for propositional logic relies mostly on its
bare simplicity. The method can also be straightforwardly implemented, it seems
tailored for a dumb machine able to crunch symbols quickly. The only computational
cost is a search for complementary atoms in the set of clauses.

Of course, the picture for the first-order case is different (to start with, first-order
resolution has to address an undecidable problem!). And actual implementations
of first-order resolution systems are not “dumb” at all. In particular, during first-
order resolution we have to cope with the rich structure of terms, and the unification
algorithm (introduced by Robinson in [36], see [33] for a linear time version) plays a
fundamental role in handling this complexity, and in using it to guide the search. The
field of resolution based first-order theorem proving has developed into a community
of its own, with an impressive collection of methods and optimizations [9, 34].

In contrast to the popularity of resolution-based methods in first-order logic, mod-
ern modal theorem provers are generally based on tableau methods [15]. Nowadays,
resolution and modal languages seem to be related only when indirect methods are
used. In translation-based resolution calculi for modal logics, one translates modal
languages into a large background language (typically first-order logic), and devises
strategies that guarantee termination for the fragment corresponding to the origi-
nal modal language [22, 29, 17, 5]. First-order resolution provers like bliksem [12] or
spass [38] handle modal formulas in this way, in some cases using extremely optimized
translations like those investigated in [32, 37]. This approach has both advantages and
disadvantages with respect to the tableau approach. On the one hand we can translate
many systems into the same background language and hence explore different, and
also combined, systems without the need to modify the prover. But empirical tests
show that the price to pay is high [28, 5]. The undecidability of the full background
language shows up in degraded performance on the modal fragments, and first-order
provers can hardly emulate their tableau based competitors.

Given the simplicity of propositional resolution, it is natural to wonder why direct
resolution methods for modal languages don’t figure in the picture. Designing resolu-
tion methods that can directly (without translation into large background languages)
be applied to modal logics, received some attention in the late 1980s and early 1990s
[20, 30, 16]. Also, the first (non-clausal) resolution methods for temporal languages
go back to that period with the work of Abadi and Manna [1]. Recently, new results
on clausal temporal resolution have been presented (see [18]). But even though we
might sometimes think of modal languages as a “simple extension of propositional
logic,” direct resolution for modal languages has proved a difficult task. Intuitively,
in basic modal languages the resolution rule has to operate inside boxes and diamonds
to achieve completeness. This leads to more complex systems, less elegant results,
and poorer performance, ruining the one-dumb-rule spirit of resolution.

In this paper we will show how ideas from hybrid logics can be put to work with
benefit even when the subject is purely modal. In particular, aided by the notions of
nominals and labeling, we will show how to define simple direct resolution methods
for modal languages. This “case study” is an example of how the additional flexibility
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provided by the ability to name states can be used to improve reasoning methods.
In addition, we can build over the basic resolution system and obtain extensions for
hybrid and also description languages.

The main characteristics of the resolution method we will introduce can be sum-
marized as follows:

• by using labeled formulas it avoids the complexity of earlier direct resolution-
based methods for modal logic;

• it does not involve skolemization beyond the use of constants;

• it does not involve translation into large undecidable languages, working directly
on modal, hybrid or description logic formulas instead;

• it is flexible and conservative in more than one sense: it incorporates the method
of prefixes used in tableaux [23] into resolution in such a way that different
heuristics and optimizations devised in either field are applicable.

The structure of the paper is as follows. In Section 2 we discuss, in some detail,
the problems with direct modal resolution. We do this by discussing the system
presented by Enjalbert and Fariñas del Cerro in [20]. In Section 3 we introduce
labeled resolution for the basic multi-modal logic Km. Informally, the calculus uses
the hybrid @ operator to “push formulas out of modalities” and in this way, feed them
into a simple (RES) rule. Whereas in Section 3, we use the hybrid machinery only at
the meta-logical level, the next step naturally leads us to internalized systems. We
start in Section 4, by providing a resolution based method for deciding knowledge
base inconsistency (with simple, acyclic T-Boxes and non-empty A-Boxes) for the
description logic ALCR; as discussed in [2], ALCR can be viewed as a restricted
hybrid language. In Section 5 we finally move into the complete basic hybrid language,
fully internalizing our use of @ and explaining how to handle nominals. We need to
incorporate a form of equality reasoning into the resolution calculus, and discuss
paramodulation and other techniques. In the last part of this section we show how
to treat very expressive hybrid languages, by considering the ↓ hybrid binder. In
Section 6 we conclude, with comments on related work and some directions for further
research.

2 Direct Resolution for Modal Languages

To understand how we can use hybrid logic ideas to improve direct modal resolution,
we introduce the system presented by Enjalbert and Fariñas del Cerro in [20]. En-
jalbert and Fariñas del Cerro use some non-standard definitions which we introduce
below and to which we adhere only in the present section; we will revert to more
standard notation in the rest of the paper.

A modal formula is in disjunctive normal form if it is a (possibly empty) disjunc-
tion of the form

φ =
∨
Li ∨

∨
2Dj ∨

∨
3Ak,

where each Li is a literal, each Dj is in disjunctive normal form, and each Ak is in
conjunctive normal form. A modal formula is in conjunctive normal form if it is a
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conjunction φ =
∧
Ci, where each Ci is in disjunctive normal form. A formula in

disjunctive normal form is called a clause. The empty clause is denoted as ⊥. The
conjunction C1 ∧ · · · ∧ Cn is identified with the set (C1, . . . , Cn). For any modal
formula an equivalent clause can be obtained, so that attention can be restricted to
clauses.

The following examples of applications of the resolution rule “in modal contexts”
are discussed in [20] to show the intricacies of modal resolution:

(a)
2(p ∨ q) 2¬p

2q
(b)

2(p ∨ q) 3¬p
3(¬p, q)

.

Both inferences are sound, and can be viewed as generalizations of the (RES) rule.
While (a) closely follows the (RES) pattern (we resolve on p inside 2 and cut it out
to obtain 2q), (b) is more complex: we again resolve on p but simply eliminating p
from 2(p∨q) to obtain 2q is unsound. Instead, we can soundly infer 3q which would
somehow follow the “cutting” pattern of resolution but this is too weak; the proper
inference being both ¬p and q possible at the same state of the model.

Moreover, an attempt to apply a similar rule to the clauses 3(p ∨ q) and 3¬p to
derive 3(¬p, q) does not preserve soundness. Also, inferences with only one premise
seem to be needed, as for example in

(c)
3(¬p, p ∨ q)

3(¬p, p ∨ q, q)
,

where we resolve on p inside the same clause to infer 3(¬p, q). Enjalbert and Fariñas
del Cerro explain that, actually, the logically equivalent but more explicit formula
3(¬p, p ∨ q, q) needs to be retained for completeness of the resolution method.

A resolution system based on these intuitions has been introduced and proved
complete for K in [20]. Specifically, define, by induction, two relations on clauses
Σ(α, β)→ γ and Γ(α)→ γ, as indicated in Figure 1, where α, β, κ, δ1, δ2 are clauses,
and Ψ, Φ are sets of clauses. The relations Σ and Γ will be used to define the notion

Axioms

(A1) Σ(p,¬p)→ ⊥
(A2) Σ(⊥, α)→ ⊥

Σ-Rules Γ-Rules

(∨)
Σ(α, β)→ κ

Σ(α ∨ δ1, β ∨ δ2)→ κ ∨ δ1 ∨ δ2
(31)

Σ(α, β)→ κ

Γ(3(α, β,Φ))→ 3(α, β, κ,Φ)

(23)
Σ(α, β)→ κ

Σ(2α,3(β,Ψ))→ 3(β, κ,Ψ)
(32)

Γ(α)→ β

Γ(3(α,Φ))→ 3(β, α,Φ)

(22)
Σ(α, β)→ κ

Σ(2α,2β)→ 2κ
(∨)

Γ(α)→ β

Γ(α ∨ κ)→ β ∨ κ

(2)
Γ(α)→ β

Γ(2α)→ 2β

Figure 1: Enjalbert and Fariñas del Cerro resolution rules.
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of resolvent, i.e., of a clause obtained via resolution from a previous set of clauses.
The definition is rather involved, starting from the axioms stating the cut on opposing
literals and the propagation of inconsistencies ((A1) and (A2)), to the inductive steps
which specify how disjunctions should be handled (the pair of (∨) rules) and how one
should deal with modal contexts ((23), (22), (31), (32), (2)).

The full formal definition runs as follows. Start by defining the simplification
relation A ≈ B (perhaps better understood as a rewriting system ;) as the least
congruence containing

3⊥ ≈ ⊥ ⊥ ∨D ≈ D
(⊥, A) ≈ ⊥ A ∨A ∨D ≈ A ∨D.

For any formula F there is a unique F ′ such that F ≈ F ′ and F ′ cannot be simplified
further. This formula F ′ is called the normal form of F . C is a resolvent of A
and B (respectively A) iff there is some C ′ such that Σ(A,B) → C ′ (respectively,
Γ(A) → C ′) and C is the normal form of C ′. We write Σ(A,B) ⇒ C (respectively,
Γ(A)⇒ C) if C is a resolvent of A and B (respectively, of A).

Given a set of clauses S, let ClSet∗(S) be the smallest set containing S that is closed
under resolvents of elements in ClSet∗(S). D is said to be a resolution consequence of
a set of clauses S (notation S ` D) iff D ∈ ClSet∗(S).

Theorem 1 ([20]) For S ∪ {D} a finite set of clauses, S ` D iff |=K

∧
S → D.

So much for the “one dumb rule spirit” of resolution. Let us go through an example
to better understand how this resolution method works. As is standard, we use the
resolution system to check for unsatisfiability. If starting from a clause φ we are able
to derive the empty clause ⊥, then φ is unsatisfiable.

Example 2 Consider the formula 3(p∧(¬p∨2r∨q))∧2¬q∧23¬r. In the resolution
proof below we underline the literals on which resolution takes place, and simplify
some steps for succinctness.

1. (3(p,¬p ∨2r ∨ q),2¬q,23¬r) by (A1), (∨) and (31)
2. (3(p,¬p ∨2r ∨ q,2r ∨ q),2¬q,23¬r) by (A1), (∨) and (23)
3. (3(p,¬p ∨2r ∨ q,2r ∨ q,2r),2¬q,23¬r) by (A1) and (23) twice
4. (3(p,¬p ∨2r ∨ q,2r ∨ q,2r,3(¬r,⊥)),2¬q,23¬r) by (A2) and (31)
5. ⊥

Even following this simple proof is complex. For example, line 1 should be understood
as follows. Given that (p,¬p)⇒ ⊥ by (A1), we can infer by (∨) that (p,¬p∨2r∨q)⇒
(p,¬p∨2r∨ q,2r∨ q) (this already involves some simplifications). An application of
(31) allows us to perform this inference under 3.

As we have just seen, the direct resolution method for modal logics presented in [20]
(and, similarly, those in [21, 30, 16]) performs resolution “inside” modalities, leading
to a proliferation of deductive rules. In the next sections we develop a direct resolution
method for modal, description and hybrid logic that retains as much of the lean one-
rule character of traditional resolution methods as possible. The key idea, from a
basic modal logic perspective, is to use labels to decorate formulas with additional
information. Labels allow us to make information explicit and resolution can then
always be performed at the “top level.” From a hybrid logic perspective, we are just
taking advantage of the new expressive power that nominals and @ provide.
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3 Labeled Modal Resolution

We now introduce a direct resolution proof procedure for the basic multi-modal logic
Km. We assume a fixed modal similarity type S = 〈REL,PROP〉 of accessibility
relation and propositional symbols, together with a basic hybrid logic similarity type
S ′ = 〈REL,PROP,NOM〉, where NOM is a countably infinite set of nominals (we use
ATOM to denote PROP ∪ NOM).

Definition 3 (Normal Form) We define the following rewriting procedure nf on
modal formulas:

¬¬φ nf
; φ,

〈R〉φ nf
; ¬([R]¬φ),

(φ1 ∨ φ2) nf
; ¬(¬φ1 ∧ ¬φ2).

For any formula φ, the rewriting of subformulas of φ by means of nf
; converges to

a unique normal form nf(φ) which is logically equivalent to φ. If we take ∨ and
〈R〉 as defined operators, then nf(φ) is slightly more than an expansion of definitions
(see [27]).

Definition 4 (Clauses) A clause is a finite set Cl such that each element of Cl is
a formula of the form t : φ or (t1, t2) :R for t, t1, t2 ∈ NOM, R ∈ REL and φ a basic
multi-modal formula. Let φ be a basic multi-modal formula. The set Sφ of clauses
corresponding to φ is simply {{a : nf(φ)}}, for a an arbitrary label in NOM.

Formulas in clauses can be seen as labeled formulas [23, 25]; t1 : φ specifies that the
formula φ holds at the label t1, and (t1, t2) : R requires the labels t1 and t2 to be
related by the accessibility relation R. Equivalently, a set of clauses can be seen as
a set of hybrid formulas, with t : φ standing for @tφ and (t1, t2) : R standing for
@t1〈R〉t2, and we can use hybrid models to define satisfiability for clauses. We recall
the definition of hybrid model and satisfaction (see [2] for details).

Definition 5 (Semantics) A (hybrid) model M is a tripleM = 〈M, {Ri}, V 〉 such
that M is a non-empty set, {Ri} is a set of binary relations on M , and V : PROP ∪
NOM→ Pow(M) is such that for all nominals i ∈ NOM, V (i) is a singleton subset of
M . Let M = 〈M, {Ri}, V 〉 be a model and m ∈ M . The relevant conditions for the
satisfiability relation are defined as follows:

M,m  a iff m ∈ V (a), a ∈ ATOM
M,m  [R]φ iff ∀m′.(if R(m,m′) then M,m′  φ)
M,m  @iφ iff M,m′  φ, where V (i) = {m′}, i ∈ NOM.

IfM is understood from the context, we simply write m  φ forM,m  φ. We write
M  φ iff for all m ∈M , M,m  φ.

Definition 6 (Satisfiability of Clauses) Let Cl be a clause, and letM be a hybrid
model. We write M |= Cl if M |=

∨
Cl. A set of clauses S is satisfiable if there is a

model M such that for all Cl ∈ S, M |= Cl.
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Let φ be a basic multi-modal formula and Sφ its corresponding set of clauses. Prov-
ing that φ is satisfiable iff Sφ is satisfiable is straightforward. For the left to right
implication, given M = 〈W, {Ri}, V 〉 and m ∈ M such that M,m  φ, just extend
V so that V (a) = {m} and give any interpretation to others elements in NOM. For
the other direction, drop the interpretation of elements in NOM.

We have now set up the machinery to provide the appropriate set of resolution
rules. As a guide, it is useful to recall that modal formulas can be seen as first-order
formulas by means of the standard translation ST .

Definition 7 (Standard Translation into FO) The mutually recursive functions
STx and ST y map basic modal formulas into FO:

STx(pj) = Pj(x), pj ∈ PROP STy(pj) = Pj(y), pj ∈ PROP
STx(¬φ) = ¬STx(φ) STy(¬φ) = ¬STy(φ)

STx(φ ∧ ψ) = STx(φ) ∧ STx(ψ) STy(φ ∧ ψ) = STy(φ) ∧ STy(ψ)
STx([R]φ) = ∀y.(R(x, y)→ STy(φ)) STy([R]φ) = ∀x.(R(y, x)→ STx(φ)).

Figure 2 provides a set of rules transforming sets of clauses into sets of clauses.

(∧)
Cl ∪ {t :φ1 ∧ φ2}
Cl ∪ {t :φ1}
Cl ∪ {t :φ2}

(¬∧)
Cl ∪ {t :¬(φ1 ∧ φ2)}

Cl ∪ {t :nf(¬φ1), t :nf(¬φ2)}

(RES)
Cl1 ∪ {t :φ} Cl2 ∪ {t :¬φ}

Cl1 ∪ Cl2

([R])
Cl1 ∪ {t1 : [R]φ} Cl2 ∪ {(t1, t2) :R}

Cl1 ∪ Cl2 ∪ {t2 :φ}

(¬[R])
Cl ∪ {t :¬[R]φ}
Cl ∪ {(t, n) :R}
Cl ∪ {n :nf(¬φ)}

, where n is new.

Figure 2: Labeled resolution rules.

If you read the rules with ST in the back of your mind, the meaning of ([R]) and
(¬[R]) will be immediately clear. ([R]) is needed to account for the “hidden” negation
arising from the implication in the translation of [R], and in that sense it is indeed
a standard resolution rule which cuts away the two complementary binary literals
¬R(t1, x) and R(t1, t2) and unifies x to t2. On the other hand, (¬[R]) can be seen as
a mild kind of skolemization which only involves the introduction of constants. From
this perspective, we can view the rules (∧), (¬∧) and (¬[R]) as preparing the input
formula and feeding it into the resolution rules (RES) and ([R]). In other words, the
system interleaves the reduction towards a standard clausal form with the resolution
steps as in [24]. An immediate advantage of this method is that resolution can be
performed not only on literals, but also on complex formulas.

Before moving on, let’s redo Example 2 in the new system. As before, we underline
the part of the formula where a rule applies.

7



Example 8 Consider again the formula φ = 3(p ∧ (¬p ∨ 2r ∨ q)) ∧ 2¬q ∧ 23¬r,
which in the new notation is written as 〈R〉(p ∧ (¬p ∨ [R]r ∨ q)) ∧ [R]¬q ∧ [R]〈R〉¬r.
Sφ is the singleton {{i :¬[R]¬(p ∧ ¬(p ∧ ¬[R]r ∧ ¬q)) ∧ [R]¬q ∧ [R]¬[R]¬r}}. In each
line we only show the newly generated clauses and those which will still be required
in the successive steps.

1. {i :¬[R]¬(p ∧ ¬(p ∧ ¬[R]r ∧ ¬q))∧[R]¬q∧[R]¬[R]¬r}, by ((∧) twice)
2. {i :¬[R]¬(p ∧ ¬(p ∧ ¬[R]r ∧ ¬q))}, {i : [R]¬q}, {i : [R]¬[R]r}, by (¬[R])
3. {R(i, j)}, {j : (p∧¬(p ∧ ¬[R]r ∧ ¬q))}, {i : [R]¬q}, {i : [R]¬[R]r}, by (∧)
4. {R(i, j)}, {j :p}, {j :¬(p∧¬[R]r∧¬q)}, {i : [R]¬q}, {i : [R]¬[R]r}, by (¬∧)
5. {R(i, j)}, {j :p}, {j :¬p, j : [R]r, j :q}, {i : [R]¬q}, {i : [R]¬[R]r}, by (RES)
6. {R(i, j)}, {j : [R]r, j :q}, {i : [R]¬q}, {i : [R]¬[R]r}, by ([R])
7. {j : [R]r, j :q}, {j :¬q}, {j :¬[R]r}, by (RES)
8. {j : [R]r}, {j :¬[R]r}, by (RES)
9. {}.

Definition 9 (Deduction) A deduction of a clause Cl from a set of clauses S is a
finite sequence S1, . . . , Sn of sets of clauses such that S = S1, Cl ∈ Sn and each Si
(for i > 1) is obtained from Si−1 by adding the consequent clauses of the application
of one of the resolution rules in Figure 2 to clauses in Si−1. Cl is a consequence of S
if there is a deduction of Cl from S. A deduction of {} from S is a refutation of S,
and we say that S is refutable.

The set ClSet∗(S), defined as the smallest set containing S and all its consequences,
need not be finite because the rule (¬[R]) can introduce infinitely many clauses which
only differ on the label. By restricting (¬[R]) to be “fired only once” as we will describe
in the next section, we can ensure finiteness of ClSet∗(S), and hence termination of
the search for consequences.

It is straightforward to prove that the resolution rules in Figure 2 preserve satisfia-
bility. That is, given a rule, if the premises are satisfiable, then so are the conclusions.
In Section 4, we will extend the system to deal with knowledge bases in the description
language ALCR, and prove there, in detail, soundness, completeness and termination.

3.1 Modal Extensions

From a traditional modal logic point of view we often want to consider systems above
Km. Here we choose systems T, D, and 4 as examples. Each system is axiomatically
defined as an extension of the basic system K by the addition of an axiom scheme
which characterizes certain property of the accessibility relation.

Name Axiom Scheme Accessibility Relation
T p→ 〈R〉p reflexivity: ∀x.R(x, x)
D [R]p→ 〈R〉p seriality: ∀x∃y.R(x, y)
4 〈R〉〈R〉p→ 〈R〉p transitivity: ∀xyz.(R(x, y) ∧R(y, z)→ R(x, z))

Corresponding to each of the axioms we add a new resolution rule:
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(T)
Cl ∪ {t : [R]φ}
Cl ∪ {t :φ}

(D)
Cl ∪ {t : [R]φ}

Cl ∪ {t :¬[R]nf(¬φ)}

(4)
Cl1 ∪ {t1 : [R]φ} Cl2 ∪ {(t1, t2) :R}

Cl1 ∪ Cl2 ∪ {t2 : [R]φ}
.

Soundness for these systems is immediate. For completeness and termination we
should modify the constructions in Section 4 (in particular (4) needs a mechanism of
cycle detection); this can be done using methods from [20].

4 Description Logic

We will now discuss resolution based decision methods for description logics (DL’s),
a family of specialized languages for the representation and structuring of knowledge,
related to the KL-ONE system of Brachman and Schmolze [13]. The connections
between DL’s and hybrid logics are strong (see [2, 3]), as we will clearly see in what
follows. We spell out the details of a labeled resolution system to decide inconsistency
of knowledge bases with so-called simple, acyclic T-Boxes and non-empty A-Boxes in
the description logic ALCR.

We assume fixed a description logic signature S = 〈CON,ROL, IND〉 together with
an additional countable set of labels LAB. CON is the set of atomic concepts, ROL
the set of atomic roles and IND the set of individuals.

Definition 10 (Interpretation) An interpretation I for S is a tuple I = 〈∆I , ·I〉,
where ∆I is a non-empty set, and ·I is a function assigning an element aIi ∈ ∆I

to each individual ai; a subset CIi ⊆ ∆I to each atomic concept Ci; and a relation
RIi ⊆ ∆I ×∆I to each atomic role Ri.

In other words, a description logic interpretation is just a model for a particular kind
of first-order signature, where only unary and binary predicate symbols are allowed
and the set of function symbols is empty.

The atomic symbols in a description logic signature can be combined by means of
concept and role constructors, to form complex concept and role expressions. Each
description logic is characterized by the set of concept and roles constructors it allows.
Figure 3 defines the roles and concepts constructors for the description logic ALCR,
together with their semantics.

In description logics we are interested in performing inferences given certain back-
ground knowledge.

Definition 11 (Knowledge Bases and Inference) A knowledge base is a pair Σ =
〈T,A〉 such that T is the T(erminological)-Box, a finite (possibly empty) set of termi-
nological axioms of the form C1 v C2 or R1 v R2, and A is the A(ssertional)-Box, a
finite (possibly empty) set of assertions of the form a :C or (a, b) :R, where C,C1, C2

are complex concepts, R,R1, R2 are complex roles, and a, b are individuals.
For I an interpretation and φ a terminological axiom or an assertion, we define

the relation I |= φ as follows
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Constructor Syntax Semantics

concept name C CI

top > ∆I

negation ¬C ∆I \ CI
conjunction C1 u C2 CI1 ∩ CI2
disjunction C1 t C2 CI1 ∪ CI2
universal quant. ∀R.C {d1 | ∀d2∈∆I .(RI(d1, d2)→ d2 ∈ CI)}
existential quant. ∃R.C {d1 | ∃d2∈∆I .(RI(d1, d2) ∧ d2 ∈ CI)}
role name R RI

role conjunction R1 uR2 RI1 ∩RI2

Figure 3: Operators of ALCR.

I |= C1 v C2 iff CI1 ⊆ C2
I

I |= R1 v R2 iff RI1 ⊆ R2
I

I |= a :C iff aI ∈ CI
I |= (a, b) :R iff (aI , bI) ∈ RI .

Let Σ = 〈T,A〉 be a knowledge base and I an interpretation, then I |= Σ if for all
φ ∈ T ∪ A, I |= φ. We say that Σ is satisfiable if there exists a model I such that
I |= Σ; it is unsatisfiable otherwise.

Let Σ = 〈T,A〉 be a knowledge base (with so-called simple, non-cyclic definitions,
see [31]) in ALCR. Σ can be transformed into an “unfolded” equivalent knowledge
base Σ′ = 〈∅, A′〉 where all concept and role assertions are of the form t̄ :

d
iNi [19].

Hence, from now on we will only consider knowledge bases with empty T-Boxes.
The definition of the normal form nf for DL assertions is a notational variation of

Definition 3, obtained by exchanging ∨ by t, ∧ by u, etc; and setting nf(t̄ :N) = t̄ :
nf(N). Again, for any assertion t̄ :N , nf always converges to a unique normal form.

Definition 12 (Clauses) A clause is a set Cl such that each element of Cl is either
a concept assertion of the form t :C or a role assertion of the form (t1, t2) :R, where
t, t1, t2 ∈ IND∪ LAB. A formula in a clause is a literal if it is either a role assertion, a
concept or negated concept assertion on an atomic concept, or a universal or negated
universal concept assertion. The set SΣ of clauses corresponding to a knowledge base
Σ = 〈∅, A〉 is the smallest set such that

• if a :
d
i Ci = nf(a :C) for a :C ∈ A then {a :Ci} ∈ SΣ,

• if (a, b) :
d
iRi ∈ A then {(a, b) :Ri} ∈ SΣ.

Formulas in a clause are simply assertions over an expanded set of individuals. Let Cl
be a clause, and I = 〈∆, ·I〉 a model over the expanded signature 〈CON,ROL, IND ∪
LAB〉; we put I |= Cl if I |=

∨
Cl. A set of clauses S has a model if there is model I

such that for all Cl ∈ S, I |= Cl. Clearly, Σ is satisfiable iff SΣ has a model.
Figure 4 shows the labeled resolution rules recast for the language ALCR. The

only differences with the rules in Figure 2 are that (u) handles both concept and
role conjunction, and that labels are now part of the language as the calculus directly
manipulates concept and role assertions. Before proving soundness, completeness and
termination we present a simple example of resolution in our system.

10



(u)
Cl ∪ {t̄ :N1 uN2}
Cl ∪ {t̄ :N1}
Cl ∪ {t̄ :N2}

(¬u)
Cl ∪ {t :¬(C1 u C2)}

Cl ∪ {t :nf(¬C1), t :nf(¬C2)}

(RES)
Cl1 ∪ {t̄ :N} Cl2 ∪ {t̄ :¬N}

Cl1 ∪ Cl2

(∀) Cl1 ∪ {t1 :∀R.C} Cl2 ∪ {(t1, t2) :R}
Cl1 ∪ Cl2 ∪ {t2 :C}

(¬∀) Cl ∪ {t :¬∀R.C}
Cl ∪ {(t, n) :R}
Cl ∪ {n :nf(¬C)}

, where n is new.

Figure 4: Labeled resolution rules for ALCR.

Example 13 Consider the following description. Suppose that children of tall people
are blond (1). Furthermore, all Tom’s daughters are tall (2), but he has a non-blond
grandchild (3). Can we infer that Tom has a son (4)?

(0) FEMALE
.= ¬MALE

(1) TALL v ∀Child.BLOND
(2) tom :∀Child.(¬FEMALE t TALL)
(3) tom :∃Child.∃Child.¬BLOND
(4) tom :∃Child.MALE.

As is standard in DL, we use a new proposition letter REST-TALL to complete the
partial definition in (1) to (1’) TALL

.= ∀Child.BLOND u REST-TALL (any partial def-
inition A v B can be completed to an equivalent full definition A = B u C for C a
new concept, see [31]) and we resolve with the negation of the formula we want to
infer (as a knowledge base Σ entails φ iff Σ ∪ {φ} is inconsistent). After unfolding
definitions (0) and (1’) in (2) and applying nf we obtain the following three clauses:

1. {tom :∀Child.¬(¬MALE u ¬((∀Child.BLOND) u REST-TALL))}
2. {tom :¬∀Child.∀Child.BLOND}
3. {tom :∀Child.¬MALE}.

Now we start resolving:

4. {s :¬∀Child.BLOND} by (¬∀) in 2
5. {(tom, s) :Child} by (¬∀) in 2
6. {s :¬MALE} by (∀) in 3
7. {s :¬(¬MALE u ¬((∀Child.BLOND) u REST-TALL)} by (∀) in 1
8. {s :MALE, s : ((∀Child.BLOND) u REST-TALL)} by (¬u) in 7
9. {s : ((∀Child.BLOND) u REST-TALL)} by (RES) in 6 and 8
10. {s :∀Child.BLOND} by (u) in 9
11. {s :REST-TALL} by (u) in 9
12. {} by (RES) in 4 and 10.

Thus, indeed, Tom has a son.

11



4.1 Soundness, Completeness and Termination

We will now prove that the resolution calculus for deciding knowledge base inconsis-
tency in ALCR is sound and complete, and that a procedure for ensuring termination
exists. The proofs can easily be adapted to prove completeness and termination for
the resolution calculus presented in Section 3.

Given a set of clauses SΣ corresponding to a knowledge base Σ, the notion of a
refutation for SΣ is as in Definition 9.

Theorem 14 (Soundness) The rules described in Figure 4 are sound. That is, if
Σ is a knowledge base, then SΣ has a refutation only if Σ is inconsistent.

Proof We prove that labeled resolution rules preserve satisfiability. We only discuss
(¬∀). Let I be a model of the premise. If I is a model of Cl we are done. If I is
a model of t :¬∀R.C, then there exists d in the domain, such that (tI , d) ∈ RI and
d ∈ ¬CI . Let I ′ be like I except perhaps in the interpretation of n, where nI

′
= d.

As n is new, I ′ |= t :¬∀R.C. But now I ′ |= Cl∪{(t, n) :R} and I ′ |= Cl∪{n :nf(¬C)}.

Next, we prove completeness. We follow the approach used in [20]: given a set of
clauses S we aim to define a structure TS such that

(†) if S is satisfiable, a model can be effectively constructed from TS ; and

(††) if S is unsatisfiable, a refutation can be effectively constructed from TS .

In our case we also have to deal with A-Box information, that is, with named objects
(concept assertions) and fixed constraints on relations (role assertions). We will pro-
ceed in stages. To begin, we will obtain a first structure to account for named states
and their fixed relation constraints. After that we can use a simple generalization
of results in [20]. We base our construction on trees which will help in guiding the
construction of the corresponding refutation proof.

Let Σ be a knowledge base and SΣ its corresponding set of clauses. In SΣ we
can identify a (possibly empty) subset of clauses RA of the form {(a, b) :R}, and for
each label a a (possibly empty) subset CAa of clauses of the form {a : C}. Notice
that SΣ has no mixed clauses containing both concept and role assertions (in a single
disjunction). Also, there are no disjunctive concept assertions on different labels, i.e.,
there is no clause Cl in SΣ such that Cl = Cl′ ∪ {a :C1} ∪ {b :C2} for a 6= b. We will
take advantage of these properties in the first steps of the completeness proof.

For each label a appearing in Σ, construct inductively a binary tree Ta whose
nodes will be sets of clauses. Let the original tree Ta consist of the single node CAa

and repeat in alternation the following operations:

Operation A1. Repeat the following steps as long as possible:

• choose a leaf w. Replace in w any clause of the form {a : ¬(C1 u C2)} by {a :
nf(¬C1), a : nf(¬C2)}; and any clause of the form {a :C1 u C2} by {a :C1} and
{a :C2}.

Operation A2. Repeat the following steps as long as possible:

• choose a leaf w and a clause Cl in w of the form Cl = {a :C1, a :C2} ∪ Cl′;

• add two children w1 and w2 to w, where w1 = w\{Cl} ∪ {{a : C1}} and w2 =
w\{Cl} ∪ {{a :C2} ∪ Cl′}.

12



The leaves of Ta give us the possibilities for “named states” in our model. We can
view each leaf as a set Sja, representing a possible configuration for state a.

Proposition 15 Operation A (the combination of A1 and A2) terminates, and upon
termination

1. all the leaves S1
a, . . . , S

n
a of the tree are singleton sets of literal clauses,

2. if all S1
a, . . . , S

n
a are refutable, then CAa is refutable,

3. if one Sja is satisfiable, then CAa is satisfiable.

Proof Termination is trivial. Item 1 holds by virtue of the construction, and 2 is
proved by induction on the depth of the tree. We need only realize that by simple
propositional resolution, if the two children of a node w are refutable, then so is w.
Item 3 is also easy. Informally, Operation A “splits” disjunctions and “carries along”
conjunctions. Hence if some Sja has a model we have a model satisfying all conjuncts
in CAa and at least one of each disjunct.

We now consider the set RA of role assertions. Let NAMES be the set of labels which
appear in Σ. If a is in NAMES but CAa is empty in SΣ, define S1

a = {{a :C, a :¬C}}
for some concept C. We define the set of sets of nodes N = {Ni | Ni contains exactly
one leaf of each Ta}; each Ni is a possible set of constraints for the named worlds in
a model of SΣ.

For all i, we will now extend each set in Ni with further constraints. For each
Sa ∈ Ni, start with a node wa labeled by Sa.

Operation B1. Equal to Operation A1.

Operation B2. Repeat the following steps as long as possible:

• choose nodes wa, wb such that {(a, b) :R} in RA, {a :∀Ri.Ci} ∈ wa, {b :Ci} 6∈ wb,
where wb is without children;

• add a child to wb, w
′
b = wb ∪ {{b :Ci}}.

Let N∗i be the set of all leaves obtained from the forest constructed by applying
Operation B (the combination of B1 and B2).

Proposition 16 Operation B terminates, and upon termination

1. all nodes created are derivable from
⋃
Ni ∪RA, and hence if a leaf is refutable

so is
⋃
Ni ∪RA, and hence SΣ too.

2. if some
⋃
N∗i is satisfiable, then SΣ is satisfiable.

Proof To prove termination, notice that in each cycle the quantifier depth of the
formulas considered decreases. Furthermore, it is not possible to apply twice the
operation to nodes named by a and b and a formula a :∀Ri.Ci.

As to item 1, each node is created by an application of the (∀) rule to members
of Ni ∪ RA or clauses previously derived by such applications. Hence either already
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the original
⋃
N∗i is refutable and we can build a refutation for SΣ as indicated in

Proposition 15, or {} can be derived from
⋃
Ni by simple application of (∀).

To prove item 2, let I be a model of N∗i . Define I ′ = 〈∆′, ·I′〉 as ∆′ = ∆, aI
′

= aI

for all labels a, CI
′

= CI for all atomic concepts C, and RI
′

= RI∪{(aI , bI) | {(a, b) :
R} ∈ RA}.

Observe that I ′ differs from I only in an extended interpretation of role symbols.
By definition, I ′ |= RA. It remains to prove that I ′ |= CA. By Proposition 15, we
are done if we prove that I ′ |=

⋃
N∗i . Since we only expanded the interpretation of

relations, I and I ′ can only disagree on universal concepts of the form a :∀R.C. By
induction on the quantifier depth we prove this to be false.

Assume that I and I ′ agree on all formulas of quantifier depth less than n, and
let a :∀R.C be of quantifier depth n, for {a :∀R.C} ∈ S∗a. Suppose I ′ 6|= ∀R.C. This
holds iff there exists b such that (aI

′
, bI

′
) ∈ RI′ and I ′ 6|= b : C. By the inductive

hypothesis, I 6|= b :C. Now, if (aI , bI) ∈ RI we are done. Otherwise, by definition
{(a, b) :R} ∈ RA. But then {b :C} ∈ S∗b by construction and as I |= S∗b , we also have
I |= b :C — a contradiction.

Each N∗i represents the “named core” of a model of S. The final step is to define the
non-named part of the model. The following operations are performed to each set in
each of the N∗i , obtaining in such a way a forest Fi.

Fix N∗i , and a. We construct a tree “hanging” from the corresponding S∗a ∈ N∗i .
The condition that each node of the tree is named by either an individual or a new
label (that is, all the formulas in a node have the same label) will be preserved as
an invariant during the construction. Set the original tree u to S∗a and repeat the
following operations C1, C2 and C3 in succession until the end-condition holds.

Operation C1. Equal to Operation A1.

Operation C2. Equal to Operation A2.

Operation C3. For each leaf w of u,

• if for some concept we have {C}, {¬C} ∈ w, do nothing;

• otherwise, since w is a set of unit clauses, we can write w = {{t :C1}, . . . , {t :Cm},
{t : ∀Rk1 .A1}, . . . , {t : ∀Rkn .An}, {t :¬∀Rl1 .P1}, . . . , {t :¬∀Rlq .Pq}}. Form the
sets wi = {{nf(t′ :¬Pi)}} ∪ Si, where t′ is a new label, and Si = {{t′ :Ah} | {t :
∀Ri.Ah} ∈ w}, and append each of them to w as children marking the edges as
Ri links. The nodes wi are called the projections of w.

End-condition. Operation C3 is inapplicable.

Proposition 17 Operation C (the combination of C1, C2 and C3) cannot be applied
indefinitely.

Definition 18 We call nodes to which Operation C1 or C2 has been applied of type
1, and those to which Operation C3 has been applied of type 2. The set of closed
nodes is recursively defined as follows,

• if for some concept {t :C}, {t :¬C} are in w then w is closed,

• if w is of type 1 and all its children are closed, w is closed,
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• if w is of type 2 and some of its children is closed, w is closed.

Let Fi be a forest that is obtained by applying Operations C1, C2, and C3 to N∗i as
often as possible. Then Fi is closed if any of its roots is closed.

Lemma 19 If one of the forests Fi is not closed, then SΣ has a model.

Proof Let Fi be a non-closed forest. By a simple generalization of the results in [20,
Lemma 2.7] we can obtain a model I = 〈∆, ·I〉 of all roots S∗a in Fi, from the trees
“hanging” from them, i.e., a model of

⋃
N∗i . By Proposition 16, SΣ has a model.

Lemma 19 establishes the property (†) we wanted in our structure TS . To establish
(††) we need a further auxiliary result.

Proposition 20 Let w be a node of type 2. If one of its projections wi is refutable,
then so is w.

Proof Let w be a set of unit clauses w = {{t : C1}, . . . , {t : Cm}, {t : ∀Rk1 .A1},
. . . , {t : ∀Rkn .An}, {t : ¬∀Rl1 .P1}, . . . , {t : ¬∀Rlq .Pq}}. And let wi be its refutable
projection: wi = {{nf(t′ : ¬Pi)}} ∪ Si, where t′ is a new label, and Si = {{t′ :
Ah} | {t :∀Ri.Ah} ∈ w}. We use resolution on w to arrive at the clauses in wi from
which the refutation can be carried out: Apply (¬∀) to {t :¬∀Ri.Pi} in w to obtain
{t′ :nf(t′ :¬Pi)} and {(t, t′) :Ri}. Now apply (∀) to all the clauses {t :∀Ri.Ah} in w to
obtain {t′ :Ah}.

Lemma 21 In a forest Fi, every closed node is refutable.

Proof For w a node in Fi, let d(w) be the largest distance from w to a leaf.
If d(w) = 0, then w is a leaf, thus for some concept C, {t :C} and {t :¬C} are in

w. Using (RES) we immediately derive {}.
For the induction step, suppose the lemma holds for all w′ such that d(w′) < n and

that d(w) = n. If w is of type 1, let w1 = w \{Cl}∪{Cl1} and w2 = w \{Cl}∪{Cl2}
be its children. By the inductive hypothesis there is a refutation for w1 and w2. By
propositional resolution there is a refutation of w: repeat the refutation proof for w2

but starting with w, instead of the empty clause we should obtain a derivation of Cl2;
now use the refutation of w2. Suppose w is of type 2. Because w is closed, one of
its projections is closed. Hence, by the inductive hypothesis it has a refutation. By
Proposition 20, w itself has a refutation.

Theorem 22 (Completeness) The resolution method described above is complete:
if Σ is a knowledge base, then SΣ is refutable whenever Σ is inconsistent.

Proof We only need to put together the previous pieces. If Σ does not have a model
then neither does SΣ. By Lemma 19 all the forests Fi obtained from SΣ are closed,
and by Lemma 21, for each N∗i , one of the sets S∗aj is refutable. By Proposition 16,
for all i,

⋃
Ni ∪RA is refutable, and hence SΣ is refutable.

Because we have shown how to effectively obtain a refutation from an unsatisfiable
set of clauses we have also established termination. Notice that during the complete-
ness proof we have used a specific strategy in the application of the resolution rules
(crucially, the (¬∀) rule is never applied twice to the same formula). By means of this
strategy, we can guarantee termination of labeled modal resolution when verifying
the consistency of any knowledge base in ALCR.
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Theorem 23 (Termination) Labeled resolution can effectively decide consistency
of simple, acyclic knowledge bases in ALCR.

We have now spelled out in detail our resolution method for the basic description
logic ALCR, and we could naturally consider extensions. For instance, in [14] some
attention has been given to n-ary roles (in modal logic terms, n-ary modal operators).
Our approach generalizes to this case without further problems.

An attractive idea which matches nicely with the resolution approach is to incor-
porate a limited kind of unification on “universal labels” of the form x :C, to account
for on the fly unfolding of definitions and more general T-Boxes. The use of such
universal labels would make it unnecessary to perform a complete unfolding of the
knowledge base as a pre-processing step. The leitmotif would be “to do expansion by
definitions only when needed in deduction.” On the fly unfolding has already been
implemented in tableaux based systems like kris [7].

5 Hybrid Logic

It is the turn of hybrid languages now. Of course, we have already been dealing with
hybrid languages throughout the previous section: formulas in the A-Box are actually
a restricted form of @ formulas. To handle the full basic hybrid language H(@), we
need to provide rules for nominals and @. As before, we can get a hint of what is
needed from the standard translation of this language into FO. The new clauses of
ST are as follows:

STx(i) = (x = i), i ∈ NOM ST y(i) = (y = i), i ∈ NOM
STx(@iφ) = ∃x.(x = i ∧ STx(φ)) ST y(@iφ) = ∃y.(y = i ∧ ST y(φ)).

Nominals and @ introduce a limited form of equational reasoning on labels. Indeed,
a formula like @ij is true in a model iff i and j label the same state. Moreover, in
the tableau treatment of hybrid languages, nominals and the @ operator have been
considered as the mechanisms needed to formulate modal theories of state equality
and state succession [10].

In the resolution tradition, Robinson and Wos [35] have introduced a rule called
paramodulation to improve previous accounts of equational reasoning in FO:

(PARAM)
Cl1 ∪ {t = s} Cl2 ∪ {φ(u)}

(Cl1 ∪ Cl2 ∪ {φ(u/s)})σ
,

where σ is the most general unifier of t and u. In descriptions of paramodulation
calculi one usually identifies the symmetric equations s = t and t = s, includes
(positive) factoring, and an inference rule that encodes resolution with the reflexivity
axiom:

(REF)
Cl ∪ {t 6= s}

Clσ
,

where σ is the most general unifier of s and t. For a complete discussion of equational
reasoning in first-order logics, we refer to [8]. We can introduce paramodulation in
our direct resolution calculus for the basic hybrid language as follows:

(PARAM)
Cl1 ∪ {@ts} Cl2 ∪ {φ(t)}

Cl1 ∪ Cl2 ∪ {φ(t/s)}
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(SYM)
Cl ∪ {@ts}
Cl ∪ {@st}

(REF)
Cl ∪ {@t¬t}

Cl

We need only one further rule to handle formulas of the form @s@tφ (see (@) below).
Figure 5 shows the complete set.

(∧)
Cl ∪ {@t(φ1 ∧ φ2)}

Cl ∪ {@tφ1}
Cl ∪ {@tφ2}

(¬∧)
Cl ∪ {@t¬(φ1 ∧ φ2)}

Cl ∪ {@tnf(¬φ1),@tnf(¬φ2)}

(RES)
Cl1 ∪ {@tφ} Cl2 ∪ {@t¬φ}

Cl1 ∪ Cl2

([R])
Cl1 ∪ {@t[R]φ} Cl2 ∪ {@t¬[R]¬s}

Cl1 ∪ Cl2 ∪ {@sφ}

(¬[R])
Cl ∪ {@t¬[R]φ}
Cl ∪ {@t¬[R]¬n}
Cl ∪ {@nnf(¬φ)}

, where n is new.

(@)
Cl ∪ {@t@sφ}
Cl ∪ {@sφ}

(PARAM)
Cl1 ∪ {@ts} Cl2 ∪ {φ(t)}
Cl1 ∪ Cl2 ∪ {φ(t/s)}

(SYM)
Cl ∪ {@ts}
Cl ∪ {@st}

(REF)
Cl ∪ {@t¬t}

Cl

Figure 5: Labeled resolution rules for H(@).

Two remarks on the rules above. Given that @ is self dual, we can define nf(¬@tφ) =
@tnf(¬φ); and for any formula φ in H(@), φ is satisfiable iff @tφ is satisfiable, for a
nominal t not appearing in φ. Hence, we can define the set Sφ of clauses corresponding
to φ to be {{@tnf(φ)}}, where t does not appear in φ.

The soundness of the calculus is straightforward and the proof of Theorem 22 can
be adapted in a way similar to the standard first-order case, to prove that paramod-
ulation can handle @ and nominals (see [8]).

Theorem 24 The resolution calculus introduced in Figure 5 is sound and complete
for H(@).

It is interesting to point out that optimizations and alternatives to paramodulation
such as those discussed in [8] can now be investigated in the hybrid setting. In
particular, we conjecture that heuristics can be devised to make the resolution calculus
above terminating.

What about binders? Extending the system to account for hybrid sentences using
↓ is fairly straightforward. Consider the rule (↓) below (again ↓ is self dual, so we
don’t need a rule for its negation):
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(↓) Cl ∪ {@t↓x.φ}
Cl ∪ {@tφ(x/t)}

.

Notice that the rule transforms hybrid sentences into hybrid sentences. The full set of
rules gives us a complete calculus for sentences in H(@, ↓). Let’s go through a short
example.

Example 25 We prove that ↓x.〈R〉(x∧p)→ p is a tautology. Consider the negation
of the formula in clausal form

1. {@i↓x.¬[R]¬(x ∧ p)}, {@i¬p} by (↓)
2. {@i¬[R]¬(i ∧ p)}, {@i¬p} by (¬[R])
3. {@i¬[R]¬j}, {@j(i∧p)}, {i :¬p} by (∧)
4. {@ji}, {@jp}, {@i¬p} by (PARAM)
5. {@ip}, {@i¬p} by (RES)
6. {}.

Of course, we cannot expect a heuristic ensuring termination of our calculus for
H(@, ↓), as the satisfiability problem for H(↓) is already undecidable (see [11]).

6 Conclusions

Blackburn [10] argues that hybrid languages can be used to internalize labeled de-
duction. Similar ideas play a fundamental role in the labeled resolution systems we
introduced in this paper. Once again, nominals/labels together with the satisfiability
operator : or @ are the key to achieving smooth and well behaved reasoning methods.
The systems we introduced make clear that labeled resolution has many advantages
in comparison with direct resolution proposals, thus supporting our claim that hybrid
logic ideas can indeed be used to improve reasoning methods. We conclude the paper
with a discussion of a number of independent directions for future research.

Once labels are introduced, the resolution method is very close to the tableaux
approach, but we are still doing resolution. As we said, the rules (∧), (¬∧) and
(¬[R]), prepare formulas to be fed into the resolution rules (RES) and ([R]). And
the aim is still to derive the empty clause instead of finding a model by exhausting
a branch. But, is this method any better than tableaux? We don’t think this is
the correct question to ask. We believe that we learn different things from studying
different methods. For example, Horrocks and Patel-Schneider [27] study a number
of interesting optimizations of the tableaux implementation which were tested on the
tableaux based theorem prover dlp. Some of their ideas can immediately be (or have
already been) incorporated in our resolution method (lexical normalization and early
detection of clashes, for instance), and others might be used in implementations of our
method. At the same time, optimizations for direct resolution such as those discussed
in [6] can also be exploited. For example, in implementations of the resolution algo-
rithm, strategies for selecting the resolving pairs are critical. This kind of heuristics
has been investigated by Auffray et al. [6] and some of their results easily extend to
our framework. In certain cases, establishing completeness of these heuristics is even
simpler because of our explicit use of resolution via nominals and @.

The issue of heuristics is very much connected to complexity. The basic heuristic
used in the proof of Theorem 22 keeps the complete clause set “in memory” at all
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times and hence requires non-polynomial space. A similar situation occurs in clausal
propositional resolution where the translation into clausal form can introduce an
exponential blow up. We conjecture that a PSPACE heuristic for labeled resolution
can be obtained by exploiting further the presence of labels (and given that we don’t
force a translation into full clausal form). Notice that nominals and @ let us keep
track of the accessibility relation and we can define the notion of “being a member of
a branch.” Now we can attempt to use the tree property of modal languages to guide
resolution. We used similar ideas in [5] to improve the performance of translation
based resolution provers; see also [26] for translation based resolution methods which
are able to polynomially simulate PSPACE tableaux.

The first author and Juan Heguiabehere are implementing a first prototype of
the resolution method described in this paper. It would be interesting to perform
empirical testing on the performance of this resolution prover along the lines of, for
example [28], both in comparison with translation based resolution provers and those
based on tableaux.

Finally, our completeness proof is constructive: if a refutation cannot be found, we
can actually define a model for the formula or knowledge base. Hence, our methods
can also be used for model extraction. How does this method perform in comparison
with traditional model extraction from tableaux systems?
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