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Abstract

We show how labelled deductive systems can be combined with a logical framework to
provide a natural deduction implementation of a large and well-known class of propositional
modal logics (including K, D, T, B, S4, S4.2, KD45, S5). Our approach is modular and
based on a separation between a base logic and a labelling algebra, which interact through
a fixed interface. While the base logic stays fixed, different modal logics are generated by
plugging in appropriate algebras. This leads to a hierarchical structuring of modal logics
with inheritance of theorems. Moreover, it allows modular correctness proofs, both with
respect to soundness and completeness for semantics, and faithfulness and adequacy of the
implementation. We also investigate the tradeoffs in possible labelled presentations: we show
that a narrow interface between the base logic and the labelling algebra supports modularity
and provides an attractive proof-theory but limits the degree to which we can make use of
extensions to the labelling algebra.

1 Introduction

In this paper we examine how two complementary proposals for dealing with the
enormous range of logics developed in recent years combine together in practice. The
first is the use of a generic theorem prover [12, 13, 17], based on a logical framework,
which can be used to implement proof systems for many logics in a uniform manner.
These theorem provers are based on a metalogic in which the syntax and proof rules
of object logics are encoded, and theorems of the object logic are constructed by
proving theorems in the metalogic. The second is that of a Labelled Deductive System
(LDS, [10]), a method for giving uniform presentations of non-standard logics based
on possibly radically different deductive systems, e.g. modal, substructural, or non-
monotonic logics. In the LDS approach, instead of a consequence relation being
defined over formulae (... A+ B...), it is defined over pairs consisting of a label and
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aformula (... z:A+ y:B...). The labels then allow information needed to formalize
the more subtle metatheoretic aspects of the relation to be tracked. For modal logic,
for instance, we might want to distinguish between ‘local’ (with respect to some world)
and ‘global’ (with respect to some frame) consequence, so the label could keep track of
the ‘possible world’ in which the formula lives. Or for a substructural logic, where the
consequence relation should be sensitive to operations like weakening and contraction,
the labels might track resources and their use [7].

We study this combination in the case of propositional modal logics and show how
it can provide a simple and usable implementation of a large collection of logics (in-
cluding K, D, T, B, S4, S4.2, KD45, S5) in a natural deduction (ND, [18, 19]) setting.
We view a proof system for an LDS as consisting of two parts: a base logic for ma-
nipulating labelled formulae, and a separate labelling algebra for reasoning about the
labels. Our base logic, in which labels represent possible worlds in the Kripke frame,
is a labelled ND presentation of propositional calculus extended with introduction
and elimination rules for O (formalizing the modal logic K). Our labelling algebras
are relational theories comprised of Horn clause axioms formalizing the accessibility
of worlds in Kripke frames. These two parts are separate and communicate through
an interface provided by the rules for 0. We implement these theories in the Isabelle
logical framework [17], and this separation is enforced by the use of multiple judge-
ments (cf. [12]) in the metalogic, which distinguish between relational and labelled
formulae.

Why Combine Paradigms?

Why should the LDS and logical framework paradigms be combined when logical
frameworks themselves should suffice to formalize and implement logics? We con-
tend, and we hope our development illustrates, that the combination is sensible and
advantageous since each paradigm can provide something that the other lacks. On
one hand, an LDS can help tailor the consequence relation of a logic to fit better
that of the metalogic. On the other, a logical framework provides a means of directly
implementing certain kinds of LDS presentations (see discussion in Section 6.2) as
ND proof systems, provides a concrete metalogic for reasoning about the correctness
of the implementation, and may, as in the case of Isabelle, support structured theory
development. Below we consider these points in more detail.

Many of the framework logics that have been actively studied, e.g. the type theory
of the Edinburgh LF [12], the higher-order logic of Isabelle [17], and even programming
languages like A-Prolog [8], lend themselves best to representing logics that can be
presented as collections of rules for proof under assumption. An example of such a
rule is the standard arrow (implication) introduction rule:

LAFB
TFA—B 1

This rule is associated with natural deduction, which, as the name suggests, is com-
monly recognized as one of the most natural systems for building proofs, at least for
humans (as opposed to computers).

Unfortunately, modal logics fit natural deduction poorly; they are usually pre-
sented as Hilbert systems, even though these are recognized as one of the least nat-
ural systems for building proofs. This is not to say that it is impossible to give



natural deduction presentations of modal logics; they have been developed and stud-
ied (e.g. [9, 18]). The problem is that the resulting systems often require considerable
ingenuity and the rules can be quite awkward. For instance in any ND presentation
of a modal logic based on K, where we have — I, we also are allowed to use the rule

A

ar+ oA nr,

where OI' indicates that each assumption in I' has O as its outermost connective.
The problem with this rule is that it is not pure: it carries a side condition on
the complete set of assumptions. While logical frameworks work well in encoding
certain kinds of rules, namely those rules of ordinary pure single-conclusioned ND
systems!, the logical frameworks so far proposed are not able to formalize the above
kind of impure side condition in a natural deduction setting and hence cannot directly
formalize such presentations.

Since we cannot directly encode impure rules in a logical framework, it is difficult
to build proof systems using — I and O together. Of course, there may be other
sets of proof rules, which are pure, that formalize the same logic. For example, a
pure presentation of S4 for the Edinburgh LF logical framework can be found in [2,
§4.4], where two judgements (¢rue and valid) are used which, in essence, factor the
proof system into two parts, in one of which only propositional reasoning is possible.
While it may be possible to develop other presentations in this fashion, there does
not appear to be a systematic way to do this; each new modal logic requires insight
and its own justification of correctness. Further, even when given such presentations,
we have no reason to expect them to have the same combinational properties as
their corresponding Hilbert systems; i.e. given systems corresponding to K4 and KT
(i.e. T), we do not know if their combination corresponds to KT4 (i.e. S4).

We show that the LDS approach can serve as a solution to this problem; for
modal logics, it provides precisely what is needed, namely an ordinary, pure single-
conclusioned natural deduction presentation. Moreover, the solution supports modu-
larity since the labelling algebra directly expresses the properties of the appropriate
Kripke frames.

Finding a ‘good’ presentation

In order to provide an LDS formalization of a logic we need two things: a base logic,
and a general notion of a labelling algebra. However, for each of these there may
be more than one possible candidate. For instance in this paper we concentrate on
labelling algebras corresponding to Horn theories of the accessibility relation, one pos-
sibility out of many, and not even perhaps the most obvious — why restrict ourselves
to Horn clause logic, instead of full first-order, or even higher-order, logic?

Clearly we need some criteria for assessing the relative merits of the range of
possibilities. We can, of course, consider the basic metatheoretic properties that any
logical system is expected to satisfy, such as proof normalization, but we can extend
this list. There are pragmatic considerations, such as ‘is it easy to use?’. But there are

lIn [1, footnote to §5.5], Avron summarizes this when he says that “every ordinary, pure single-
conclusioned ND system can, e.g., quite easily be implemented on the Edinburgh LF.” Note that
‘ordinary’ means that the system admits the well known rules for contraction and thinning of as-
sumptions.



other theoretical considerations: for instance D’Agostino and Gabbay, in [7, p.244],
write

The labelling algebra represents this metalevel information as a separate com-
ponent of a standard derivation system and can be treated as an independent
parameter. In the LDS approach, logical systems are not studied statically, in
isolation, but dynamically, observing the process of their generation and their
interaction (via modifications of the labelling algebras) on the basis of a fixed
proof-theoretical hard core (the underlying system of deduction).

[their emphasis]

In other words, a good LDS presentation should correspond not just to some logic,
but to a space of possible logics, which vary in a well-behaved way according to the
details of the labelling algebra; e.g. we would expect that given an LDS for modal
logic, a presentation of K4 combined with a presentation of T does result in S4. By
this standard, for instance, while the presentation of S4 in [2] could be seen as an
LDS where the two judgements correspond to labels, it would not be a good one,
since there is no labelling algebra to vary.?

The system we propose does well by these measures. It cleanly separates the
labelling algebra from the base logic K, and we show that it has good modular, com-
positional properties for the labelling algebra, behaving in the way we would expect
as we combine labelling algebras together, providing a natural hierarchy of systems
that inherit theorems and derived rules. Although not formally quantifiable, our ex-
perience shows that proof construction using this hierarchy is natural and intuitive.
Moreover, we use the parameterized relational theory to prove a parameterized com-
pleteness theorem with respect to Kripke semantics, and to prove the correctness of
the encodings. These theorems show that our implementation not only properly cap-
tures modal provability within our hierarchy, but also a satisfactory notion of proof
under assumption, i.e. consequence.

We show that using our base logic K we are able to interpret the ‘separate’ in
the previous quotation in a strong way: not only do we have a separation between
the base logic and the labelling algebra, but that separation is maintained even when
building proofs; i.e. the proofs themselves consist of a derivation tree built from the
base logic, which is decorated with a fringe of derivations in the labelling algebra
alone. It turns out that this property is directly related to the behavior of falsum (L)
in K, which is able to propagate between different worlds. We call this propagation
property global falsum. We show that this is enough to implement, among others,
the logics in the Geach hierarchy (including many of the modal logics we are likely to
encounter in practice), but not enough to implement all modal logics with first-order
definable frames.

Having identified this property of falsum, we can vary it to produce different
candidate ‘hard cores’. We investigate the other two obvious possibilities. The first of
these, an extension we call universal falsum, allows L to propagate not only from one
world to another, but also between worlds and the labelling algebra (assuming that
the labelling algebra is also extended with falsum). The second, a restriction where
1 is no longer able to propagate even between worlds, we call local falsum.

2We do not mean this as a criticism of that presentation, which was not motivated by such
concerns.



A system with universal falsum is strictly more general than one with global
falsum. In fact we show that it is essentially equivalent to a traditional semantic
embedding in first-order logic (cf. Section 4), and therefore able to treat not just, e.g.,
the Geach logics, but any first-order axiomatizable theory. However in exchange for
this greater scope we lose the better behaved proof theory of a system with global
falsum, and the result does not seem to offer any advantages over semantic embedding
in first-order logic (where there is no separation at all), and thus provides no essential
alternative to this better known approach. If we restrict ourselves to a local falsum
on the other hand, the proof system is in general not suitable for formalizing modal
logics, and proofs even no longer have normal forms. Thus K with global falsum seems
to be the weakest base logic that we can extend to a useful range of modal logics.

Outline

In this paper we give a complete account of our work on labelled propositional modal
logics, which supersedes earlier accounts in [3, 5]. In Section 2 we present a hierarchy
of labelled propositional modal logics based on K and Horn relational theories. In Sec-
tion 3 we show the soundness and completeness of these theories with respect to Kripke
semantics. After, in Section 4, we consider some of the proof-theoretic properties of
our encodings and use that to contrast our approach with related formalizations. In
Section 5 we sketch our implementation in Isabelle, its application, and its correctness.
In Section 6 we compare with related work based on natural deduction presentations
of modal logics, LDS presentations, and translation into first-order logic. Finally, we
draw conclusions. An appendix contains proof scripts from an Isabelle session that
demonstrate interactive proof construction with our implementation.

2 A Hierarchy of Labelled Modal Logics

We introduce a labelled ND system for the base modal logic K and extend it with
(Horn) relational theories.

2.1 The Base Modal Logic K

Definition 1 Let W be a set of labels and R a binary relation over W. If z and y
are labels, and A is a propositional modal formula built from 1, —, O, &) then z Ry
is a relational formula (rwff), and z:A is a labelled formula (lwff).

Hence, if p is a sentence letter, and A, B are propositional modal formulae, then z:p,
z:1l, 2:A — B, z:04, 2:0A are all lwffs. Lwils over other connectives (e.g. —, A, V)
can be defined in the usual manner, e.g. 2:7A = 2:4A — 1. Henceforth, we assume
that the variables z,y, 2z, w range over labels, the variables A, B range over proposi-
tional modal formulae, ¢ is an arbitrary rwif or lwff, and ' = {z1:41,... ,2,:45}
and A = {z1 Ry1,...,2Zm R yn} are arbitrary sets of lwffs and rwffs. These may all
be annotated with subscripts or superscripts.

The rules given in Figure 1 determine K, the base ND system which formalizes a
labelled version of the modal logic K.



z:B y:A yA zRy
I
z:A— B - z:0A4 o1 z:0A of
[z:A4 — 1] [y:4] [m R y]
y:.L z:A—> B z:A 04 zRy z:0A zB
- R m
z:A LE z:B - E y:A E z:B oF

In OI, y is different from z and does not occur in any assumption on which y:A
depends other than z Ry. In OF, y is different from z and 2z and does not occur in
any assumption on which the upper occurrence of z:B depends other than 4:4 and
z Ry. We do not enforce Prawitz’s side condition on L F that A # L.

Figure 1: The rules of K

For simplicity, in the following we will sometimes use the rules for negation, —I
and —F, which are special cases of — I and — E, respectively:

[z:4]
zil z:mA 1A
z:—A ~I ol ~E

2.2 Relational Theories

We will formalize particular modal logics by extending K with relational theories,
which axiomatize properties of the accessibility relation R in Kripke frames. Corre-
spondence theory [23, 24] provides a tool for telling us which modal axioms correspond
to which axioms for R. For example, the T axiom, OA — A, corresponds to the first-
order axiom Vz(z R z). Not all modal axioms can be captured in a first-order setting
(e.g. the McKinsey axiom OOCA — <©OA), so there is an important decision that
we must make: Should we allow all higher-order relational theories, or some subset
thereof?

This decision is non-trivial. We show in Section 4 that different choices of interface
between K and the labelling algebra result in essentially different systems. Our choice
is based on our intention to implement these theories (Section 5.1) as sets of proof
rules using a metalogic corresponding to minimal implicational predicate logic. Hence,
we have chosen to admit precisely those theories of R that can be directly formulated
in the Horn-fragment of this metalogic without requiring additional axioms (e.g. for
auxiliary predicates) or judgements (e.g. for identity). We partially justify this choice
below by showing that it captures a large class of well-known modal logics including
most of those used in practice.



2.3 Horn Relational Theories

Definition 2 A Horn relational formula is a closed formula of the form

V:rl‘v’:rn((thsl/\/\tm RSm)—)toRSO),

where m > 0, and the ¢; and s; are terms built from the labels z1, ... , 2, and constant
function symbols. Corresponding to each such formula is a Horn relational rule
t1 R 81 ... tm R Sm
to R S0

A Horn relational theory T is a theory generated by a set of such rules.

In first-order logic the addition of a Horn formula to a theory is equivalent to adding
the corresponding rule; hence, in the context of our metatheories we shall talk about
additions based on either formulae or rules as is convenient.

We now indicate that restricting our attention to Horn theories is often sufficient
in practice. Let 4, j, m, and n be natural numbers, and let O [O™] stand for a
sequence of n consecutive Os [Os]; for example G20300%4 is ©OOOOA. A large and
important class of modal logics falls under the generalized Geach axiom schema

oIOmA —» 0I0" A,

which corresponds to the semantic notion of (4, j,m,n) convergency (or ‘incestuality’
in the terminology of [6])

VaVyVz(z Ry Az R? 2 — Ju(y R™ u Az R™ u)),

where z R® y means z = y and z R**! y means Jv(z Rv Av Riy).

There are instances of (i, j,m,n) convergency that explicitly require the identity
predicate, e.g. (1,0,0,0) yields vacuity, VzVy(z R y — ¢ = y). For simplicity, we
do not consider theories with identity, and we introduce the subclass of restricted
(3,j,m,n) convergency azxioms as the class of properties of the accessibility relation
that can be expressed as Horn rules in the theory of one binary predicate R. These
theories yield, among others, most of the modal logics usually of actual interest (K,
D, T, B, S4, S4.2, KD45, S5,...).

Definition 3 Rest.ricted (1, _j,m,n) convergency azioms are closed formulae of the
form VaVyVz((z R* y Az R’ 2) — Ju(y R™ u A z R™ u)), where m = n = 0 implies
i=j=0.

Proposition 4 If T is a theory corresponding to a collection of restricted (7, j, m, n)
convergency axioms, then there is a Horn relational theory 7y conservatively extend-
ing it.

Proof The restriction that m = n = 0 implies 7 = j = 0 is a necessary and sufficient
condition for identity to be inessential (the necessity can be checked semantically),
as noted in [22]. Now, for each convergency axiom A* in Tg, let B* be formed by
prenexing quantifiers followed by skolemizing remaining existential quantifiers. B*
must be of the form:

Voy... Vo ((tt RsiA... Aty Rsp) = (t RsyA... At Rsp)),



Property (i,j,m,n) | Char. Axiom | Horn Relational Rule
Seriality (0,0,1,1) [D:OA=0A |gRf@)
Reflexivity | (0,0,1,0) | 7: OA — A Rs
S t 0,1,0,1 B: A —-0O0A 2Ry symm
ymmetry | (0,1,0,1) | B: A— y R
Ry yRz
Transitivity | (0,2,1,0) | 4 0A —-00A4 |——— — trans
z Rz
Ry zRz
Euclideaness | (1,1,0,1) | 5: A —-0O0CA | ———— eucl
zRy
C (L1,1,1) |2 004 o4 | 2RV 2RZ
onvergenc ,1,1, : — ———— conv
geney y Ryg(z,y,2)
Ry zRz 2
——— comw
z Rg(z,y,2)

Where f:W — W and ¢:(W x W x W) — W are (Skolem) function constants.

Figure 2: Some properties of R, characteristic axioms, and Horn relational rules

where ¢ = m + n # 0, and where Skolem functions occur only in the consequent. We
can translate B¥ into ¢ Horn relational formulae, BF for r € {1,..., g}, of the form

Vzy... Vo ((tt RsiA...Atp, Rsp) > t. Rsl).

Let 7z be the theory generated by the union of the BF rules; the conservativity of
Tg follows by the theorem on functional extensions [21, p.55], and the observation
that Skolem constants occur only positively in the B¥. (Alternatively, cf. Theorem
3.4.4.(i) in [25, p.137]).

Some properties corresponding to instances of restricted (i,j,m,n) convergency
are given in Figure 2. We also present there the Horn relational rules that result
from applying the above translation to these axioms, together with the corresponding
characteristic axioms.

Various combinations of Horn relational rules define labelled equivalents of stan-
dard propositional modal logics: the logic L = K + 7T is obtained by extending K
with a given Horn relational theory 7.3 Figure 3 shows a fragment of the resulting
hierarchical dependency. For example, KT4 (S4) is obtained by extending K with the

3We adopt the convention of naming the modal logic K+7 as KAz, where Az is a string consisting
of the standard names of the characteristic axioms corresponding to the relational rules contained
in 7. As an example, KD, KT, KTB, KT4, KT5 identify the logics also known as D, T, B, S4, S5.



KT5 (S5) KT42 (54.2) KD45

/’ convl,conv2

KTB (B) eucl KT4 (S4) ser,eucl
KD (D) KT (T)

i refl trans
ser convl,conv2
K

Figure 3: A hierarchy of modal logics (fragment)

rules refl and trans, or alternatively by extending either KT with trans or K4 with
refl.

Our approach of presenting logics by combinations of K with a relational theory
T provides a general method for representing logics in a modular and transparent
way. The relational theory can be viewed as an independent parameter: the base
logic K stays fixed for a given class of related logics and we generate the one we want
by combining K with the appropriate relational theory. In Section 4, we return to
the question of extensions to full first-order or higher-order theories. It is possible to
generalize our presentation here, but, perhaps surprisingly, for some extensions the
‘interface’ between K and the relational theory must be changed if completeness for
encoded logics (with respect to their intended Kripke semantics) is to be preserved,
and the metatheoretic properties of the system change.

2.4 Derivations

We adapt the standard definition of Prawitz [18] to define derivations of lwffs and
rwils relative to a given relational theory 7 used to extend K.

Definition 5 A derivation of an lwff or rwif ¢ from a set of lwffs I" and a set of
rwifs A in a logic L = K 4+ T is a tree formed using the rules in L, ending with ¢
and depending only on I' U A. We write I', A 1 ¢ when ¢ can be so derived. A
derivation of ¢ in L depending on the empty set, 1 @, is a proof of ¢ in L, and we
say that ¢ is an L-theorem.

Fact 6 When ¢ is an rwff, say 2 R y, we have that
(i) T,Atkz Ryifzs Ry € A.
(ii)) LAtgyrec Ryif Atgkyrz Ryif ALz Ry.

We also call a derivation [proof] in a logic L an L-derivation [L-proof], and we will
omit the ‘L’ when the particular logic is not relevant. We 1s_lystematica,lly use II,
possibly annotated, to range over derivations, and we write o to specify that the



formula ¢ is the conclusion of the derivation II. Similarly, we write 1-(‘0[ or [[ﬁ]] to

distinguish a possibly empty set of occurrences of the open or discharged assumption
o in II. Moreover, we use superscripts to associate discharged assumptions with rule
applications.

As an example, we give the K2-proof of the characteristic axiom corresponding to
convergency, i.e. Fgo z:00A4 — OCA.

[z Ry" [z R

convl

[y:04]* y Rg(z,y,2) OE o Ry]' [2 R conv2
9(z,y,2):A ETICULIP
[$<>DA]3 ,Z:<>A
2:OA OB
: 2
z:00A nr

—v4r 3
2004 = 004 — 1

An Tsabelle proof for this theorem is presented in the appendix. As a further example,
taken from [10, p.36], we present the K-derivation of z:O><OB from the assumptions
2z:004, y:0(A — B), and z R y.

z:00A zRy O
y:04 [y R 2]* oE
[2:A — B]* z:A
2:B —E [y R 2]}
y:O(A — B) y:OB ol
y:OB OB xRy oI
z:O0B

3 Correctness of Labelled Modal Logics

We introduce a Kripke semantics for our systems and prove that any logic L obtained
by extending K with a Horn relational theory 7 is sound and complete with respect
to its semantics.

Definition 7 A (Kripke) frame is a pair (20, %R), where 2 is a non-empty set, and
R CWxW. A (Kripke) model M is a triple (W, R, V), where (W, R) is a frame,
and 9 maps an element of 20 and a sentence letter to a truth value (0 or 1). A model
[frame] is said to have some property of binary relations (e.g. transitivity) iff 98 has
that property.

Note that our models do not contain functions corresponding to possible Skolem
functions in the signature. When such constants are present the appropriate Skolem
expansion of the model (cf. [25, p.137]) is required.

Definition 8 Given a set of lwfls " and a set of rwffs A, we call the ordered pair
(T',A) a proof context (pc). When I'; C T's and A; C A,, we write (I'1,A;) C
(T2, Az), and say that (T'y, Ay) is included in (is a subpc of ) (T2, Ag). When w:A € T,
we write w:A € (T', A) irrespective of A, and whenz Ry € A, we writez Ry € (T, A)
irrespective of I'. Finally, we say that a label z occurs in (I, A), and by abuse of

10



notation write z € (I, A), if there exists an A such that 2:4 € T, or a y such that
rRyeAoryRzeA.

Definition 9 Truth for an rwff or lwff ¢ in a model 9, =™ ¢, is the smallest relation
=7 satisfying:

EMz Ry iff (z,y)eR

E7 zp if V(z,p)=1
EM2:A— B if " z:A implies = 2:B
E7 .04 iff for all y, =™ z R y implies =™ y: A

EM 2:0A iff for some y, =™ z Ry and ™" y:A

When 7 ¢, we say that ¢ is true in 9. By extension, ="' (T, A) means that
E™ o for all p € (T, A), and T, A |= ¢ means that 7" (T, A) implies =™ ¢ for any
model M.

Note that, of course, =™ z:L for every . Moreover, truth for lwffs is related to
the standard truth relation for unlabelled modal logics, e.g. [6], by observing that
EM z: A iff EP AL

The explicit embedding of properties of the models, and the possibility of explic-
itly reasoning about them, via rwffs and relational rules, require us to consider also
soundness and completeness for rwifs, where we show that Atz Ryif AEz Ry.

Definition 10 The modal logic L = K + 7 is sound iff (i) A Fr z R y implies
AEzRy,and (ii) ', A b 2:A implies ', A |= z:A. L is complete iff the converses
hold.

Lemma 11 L =K + 7 is sound, i.e.
(i) AFL 2z Ry implies A Ez Ry, and
(ii) T, A Fr z:A implies T, A |E z: A.

Proof Throughout the prooflet M = (W, R, V) be an arbitrary model for the
logic L. We prove (i) by induction on the structure of the derivation of z R y from
A. The base case (z Ry € A) is trivial. There is one step for each Horn relational
rule; we treat only transitivity and convergency as examples. For transitivity, assume
that $Ry is transitive and consider applications of the rule trans

II, II,
xRy y Rz
xRz

where IT; and II, are the derivations A; Fr 2 Ryand Ay Fp y R z, with A = AjUA,.
By the induction hypotheses, Ay Fr 2 R y implies Ay =2 Ry, and Ay b y R 2
implies Ay = y R z. Assume "¢ A. Then, from the induction hypotheses we
obtain ™= £ Ry and "¢ y R 2, ie. (z,y) € Rz and (y,2) € Rr. Since Ry, is
transitive, we conclude =™* z R z by Definition 9.

trans

11



When Skolem constants are present, 91 is a Skolem expansion; e.g. for conver-
gency assume that 2Ry is convergent and consider applications of the rules conv! and
conv?2

IL; I, IL; I,
xRy z Rz | xRy z Rz )
conv conv
y R g(z,y,2) z R g(z,y,2)

where I1; and II; are the derivations A; b 2 Ry and As Fp 2 R z, with A = AjUA,.
By Proposition 4, the theory 7y generated by convl and conv2 is a conservative
extension of the first-order theory T corresponding to the convergency axiom. By
Theorem 3.4.4.(ii) in [25, p.137], each model of the theory T has a Skolem expansion,
contained in 9z, which is a model of Tz. Assume =""= A. Then, from the induction
hypotheses we obtain ="' z Ry and ™'t z R z, i.e. (z,y) € R and (z,2) € Rr.
Since MRy, is convergent, we conclude =™ y R g(z,y,2) and ™= 2 R g(z,y,z) by
Definition 9.

We prove (ii) by induction on the structure of the derivation of z:4 from I" and
A. The base case (2:4 €T) is trivial. There is one step for each inference rule, and
we treat only applications of L E, O and OF; the steps for the other rules follow
analogously.

Consider an application of the rule LE

[2:4 — 1]
II

y: L

T:A
where II is the derivation I'y, A bp y: 1, with I’y =T U {z:4 — L}. By the induction
hypothesis, I'1, A b1, y:L implies I'1, A | y: L. We assume ="'~ (', A), and prove
EML z:A. Since ™'t y:l for any y, from the induction hypothesis we obtain
M Ty, and therefore 7' {z:4 — 1}, ie. E™¢ 2:4 and [£™* 2:1 by Definition 9.

Consider an application of the rule O

[z R y]
II
y:A
z:04
where II is the derivation I', A; b1 y:A, with A; = AU{z R y}. By the induction
hypothesis, ', A; Fr y:A implies T, A; | y:A. Assume ="z (T, A). Considering
the restriction on the application of OI, we can extend A to A’ = AU {z R z} for
an arbitrary z ¢ (T,A), and assume =7 A’* Since =™ A’ implies =72 A,
from the induction hypothesis we obtain ="' y:A, that is =™~ z:4 for an arbitrary
z & (T, A) such that =™~ z R z. We conclude ="' z:04 by Definition 9.
Consider an application of the rule OF

I II,
z:0A4 xRy
y:A

4In other words, since y ¢ A, the assumption ="'L A extends to =""Z A;.

1FE

or

OF
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where II; and Il are the derivations I'; Ay Fp z:0A4 and As b ¢ R y, with A =
A; U Ay, Assume E'Z (T, A). Then, from the induction hypotheses we obtain
EMr 7:04 and =™ z Ry, and thus =™ y:A by Definition 9.

Definition 12 Let L = K+ 7 be a consistent logic, i.e. I/1, z: L for every label z. A
pc (T, A) is L-consistent iff T, A t/r, z: L for every label z. (T', A) is L-inconsistent iff
it is not L-consistent.

When the particular logic is not relevant, we will omit the ‘L’ and simply speak of
consistent and inconsistent pcs.

Fact 13 If (T, A) is consistent, then for every z and every A either (I'U {z:A4}, A) is
consistent or (I' U {z:—A}, A) is consistent.

For any logic L = K + T, let AL be the deductive closure of A under T, i.e.
Ar={zRy|AtLzRy}.
Note that T, A Fp ¢ iff T', Ap k1 ¢, and that Ay might be empty when A is empty.

Definition 14 A pc (T, A) is mazimally consistent iff (i) it is consistent; (i) A = Ap;
and (iii) for every z:A either z:4 € (T', A) or z:-A4 € (T, A).

Completeness follows by a modification of the standard Henkin-style proof, where a
canonical model MY = (WS, RY, BVY) is built to show that®

T, A /L ¢ implies T', A & mgcp.

In standard proofs for unlabelled modal logics the set 20¢ is obtained by progres-
sively building maximally consistent sets of formulae, where consistency is locally
checked within each set (cf. [6]). In our case, given the presence of labelled formulae
and explicit assumptions on the relations between the labels, i.e. A, we modify the
Lindenbaum lemma (Lemma 15 below) to extend (I, A) to one single maximally con-
sistent proof context (I'*, A*), where consistency is ‘globally’ checked also against the
additional assumptions in A. The elements of 20¢ are then built by partitioning I'*
with respect to the labels, and accessibility is defined by exploiting the information
in A*. Moreover, in standard proofs the way in which QU% is built depends on the
particular modal logic L, in particular on the accessibility conditions holding for L.
In our case, the proof is completely independent of L: exactly the same procedure
applies for any logic.

In the proof of the Lindenbaum lemma for first-order logic a maximally consis-
tent and w-complete set of formulae is inductively built by adding for every formula
Jdz.P(z) a witness to its truth, namely a formula P(c) for some new individual con-
stant ¢. This ensures that if, for every closed term ¢, P(t) is contained in the set,
then so is Vz.P(z). A similar procedure applies here in the case of lwffs of the form
2:OA. That is, together with z:> A we consistently add y:A4 and z R y for some new

5We consider only consistent pcs. If (I', A) is inconsistent, then I', A 1 z:A for all z:4, and
thus completeness immediately holds for lwffs. Our labelling algebra does not allow us to define
inconsistency for a set of rwifs, but, if (T, A) is inconsistent, the canonical model built in the following
is nonetheless a countermodel to non-derivable rwifs.

13



y, which acts as a witness world to the truth of z:>A. This ensures that the maxi-
mally consistent pc (I'*, A*) is such that if z R z € (I'*, A*) implies z:B € (I'*, A*)
for every z, then z:0B € (I'*, A*), as shown in Lemma 16 below. Note that in the
standard completeness proof for unlabelled modal logics, one shows instead that for
every w € ¢, if OA € w, then W¢ also contains a world accessible from w that
serves as a witness world to the truth of CA.

Lemma 15 Every consistent pc (I', A) can be extended to a maximally consistent
pc (T*, A*).

Proof We first extend the language of the logic L with infinitely many new constants
for witness worlds. Systematically let w range over labels, v range over the new
constants for witness worlds, and u range over both. All these may be subscripted.
Let l1,l2,... be an enumeration of all lwffs in the extended language (when [; is
u:A, we write —l; for u:—A). Starting from (g, Ag) = (T', A), we inductively build a
sequence of consistent pcs by defining (I'; 11, A;41) to be:

o (T;,A;), if (T; U {l;+1}, A;) is inconsistent; else
o (T;U{liz1}, Ay), if ;41 is not w:OA; else
o T, U{wOA,v:A},A;U{u Rv}), forav ¢ (T U{u:CA} A), if [ is w:OA.

Every (I';,A;) is consistent. To show this we show that if (I'; U {u:CA}, A;) is con-

sistent, then so is (I'; U {u:0CA,v:A},A; U{u R v}), for a v & (T'; U {u:0CA} Ay);

the other cases follow by construction. We proceed by contraposition. Suppose that

[; U{w:CA,v:A}, A; U{u R v} Fr uj:l for any v ¢ (T U {u:0A},A;). Then

T U{u:CA}, AjU{u Rv} b v:nA, and OF yields T; U {u:C A}, A; b u:0-A. But

this is equivalent to I'; U {u:0 A}, A; b w:=COA, and thus T; U {u:CA}, Aj b wil.
Now let

(T, 8% = (J T (Y Adn) -

i>0 i>0

We show that (I'*, A*) is maximally consistent by proving that it satisfies the con-
ditions in Definition 14. For (i), note that if (|J;5o T, U;> A¢) is consistent, so is
(UisoTis (Uj>0 Ai)r). Now suppose that (I'*, A¥) is inconsistent. Then for some
finife subpc (T, A') there exists a u such that I, A’ bp u: L. Every lwffl € (I, A’) is
in some (I';, A;). For each I € (I', A’), let 4; be the least j such that I € (I';, A;), and
let ¢ = max{s; |l € (I',A")}. Then (I',A") C (I';, A;), and (T';, A;) is inconsistent,
which is not the case. (ii) is satisfied by definition of A*. For (iii), suppose that
l'H—l ¢ (F*, A*) Then li+1 € (Fi-i—la Ai-l—l) and (Fz U {li+1}7 Az) is inconsistent. Thus,
by Fact 13, (T; U {=l;11}, A;) is consistent, and —l;;; is consistently added to some
(T;,A;) during the construction, and therefore —l;;, € (I'*, A*).

Lemma 16 Let (T'*, A*) be a maximally consistent pc. Then
(i) T*, A* Fp u; Ru; iff u; Ru; € (T, A%).
(i) T, A* Fp wA iff u:A € (I, A*).

14



(iii) w:B — C € (I'*, A*) iff u:B € (I'*, A*) implies u:C € (I'*, A*).
(iv) us:0OB € (I, A*) iff for all uj, u; Ruj € (I'*, A*) implies u;:B € (I'*, A*).
(v) u;:OB € (I'*, A*) iff for some uj, u; R uj; € (I'*,A*) and u;:B € (T'*, A*).

Proof We only treat (iv); the other properties follow analogously. Suppose that
u:0B € (['*, A*). Then, by (ii), I'*, A* b »;:0B, and, by OF, I'*, A* 1, u; R u;
implies I'*, A* 1, u;:B for all u;. By (i) and (ii), conclude u; R u; € (I'*, A*) implies
uj:B € (I'*, A*) for all u;. For the converse, suppose that u;:0B ¢ (I'*, A*). Then
u;:~OB € (T'*, A*), i.e. u;:0-B € (I'*, A*). Hence, by the construction of (I'*, A*),
there exists a uw; such that u; R u; € (I'*, A*) and u;:B & (I'*, A*).

Definition 17 Given (I'*, A*), we define the canonical model ¢ for the logic L as
follows: 2§ = {u | u € (T*,A%)}; (ui,u;) € RE iff u; R u; € A% BE (u,p) = 1 iff
up € IT'*.

The standard definition of RY, i.e. (u;,u;) € RY iff {4 | OA € u;} C uy, is not
applicable in our setting, since {4 | OA € u;} C u; does not imply b1 u; R uj.
We would therefore be unable to prove completeness for rwffs, since there would be
cases, e.g. when L = K and A = {}, where /7 u; R u; but (u;,u;) € RE, and thus
=% u; R u;. Hence, we instead define (u;,u;) € RS iff u; R u; € A*; note that
therefore u; R u; € A* implies {4 | OA € u;} C u;.> Moreover, we immediately have
that:

Fact 18 u; Ru; € A* iff A* |=9ﬁS u; R u;.

The deductive closure of A* ensures not only completeness for rwifs (as shown in
Lemma 21 below), but also that the conditions on RY are satisfied, so that ¢ is
really a model for L. As an example, we show that if L contains convl and conv2, then
RY is convergent. Consider an arbitrary pc (T, A), from which we build 9¢. Assume
(ui,u;) € R and (uj,ur) € RY. Then u; R u; € A* and u; R up, € A*. But A*
is deductively closed, and thus u; R g(u;,uj,ux) € A* and ug R g(us, uj,u) € A*.
Hence, there exists a u; such that (u;,u;) € RY and (ug, ;) € RE.

Definition 19 The degree of an lwff is the number of times — and O occur in it.
Lemma 20 u:4 € (I'*, A*) iff I'*, A* Izgﬁf w:A.

Proof By induction on the degree of u:A4; we treat only the step case given by
u;:0B (the other cases follow analogously). Assume w;:0B € (I'*, A*). Then, by
Lemma 16, u; R u; € (I'*, A*) implies u;:B € (I'*, A*), for all u;. Fact 18 and the
induction hypothesis yield I'*, A* =% v;:B for all u; such that I*, A* =™% u; R u;,
ie. IT'*, A* ':sz u;:0B by Definition 9. For the converse, assume u;:—~0OB € (I'™*, A*).
Then, by Lemma 16, u; R u; € (I'*, A*) and u;:—~B € (I'*, A*), for some u;. Fact 18
and the induction hypothesis yield I'*, A* |:9th u; R u; and I'*, A* |:5’:"g u;:—B,
ie. [, A* ™% u;:~0OB by Definition 9.

6As a further comparison with the standard definition, note also that in the canonical model the
label u can be identified with the set of formulae {A | u:A € I'*}.
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We can now finally show that:

Lemma 21 L =K + 7T is complete, i.e.
(i) A = w; Rw; implies A b7 w; R wj, and
(ii)) T, A E w:A implies T', A b1, w: A.

Proof (i) If A ¥/ w; R wj, then w; R w; ¢ A*, and thus A* l#img w; R
wj, by Fact 18. (ii) If I', A I/ w:A, then (I' U {w:—A}, A) is consistent. Other-
wise there exists a w; such that I' U {w:=A},A Fp w;: L, and then ')A g w:A.
Therefore, by Lemma 15, (I' U {w:—A}, A) is included in a maximally consistent
pc ((T' U {w:=A})*,A*). Then, by Lemma 20, (I' U {w:nA})*, A* |=mtg w:nA,
ie. (TU{w:nA})*, A* bémg w:A, and thus T', A [;réfmg w:A.

By Lemma 11 and Lemma 21 we immediately have that:

Theorem 22 L =K + 7 is sound and complete.

4 A Topography of Labelled Modal Logics

We have given a particular presentation of (propositional) modal logics as Labelled
Deductive Systems based on two separate parts: a base logic K, and Horn relational
theories. Here we consider alternatives for defining hierarchies of logics and classify
them based on their metatheoretic properties. We organize this investigation around
the interface between the two parts: since the rules for O and < cannot be sensibly
changed, this amounts to studying how falsum (L) propagates between worlds. We
show that this question directly relates to which kinds of relational theories we can
formalize while retaining completeness.

We start in Section 4.1 with the base logic K we have developed above, where we
have what we call global falsum: L can propagate from one world to another (Fact 23).
We prove that this system preserves duality between O and < (Proposition 24) and
that derivations have good normalization properties (Theorem 28) in comparison with
what we get from semantic embedding (Fact 32 and Fact 34). Then we show that in
exchange for these good properties, we cannot use K as a base to formalize all modal
logics with first-order axiomatizable frames (Theorem 33).

In Section 4.2 we consider what happens if we allow | to propagate between
base logic and labelling algebra in either direction. By doing this, we lose the good
normalization properties of K (Fact 34) in exchange for a system (K%, K with uni-
versal falsum) that is essentially equivalent to semantic embedding in first-order logic
(Theorem 36).

Finally, in Section 4.3 we investigate the properties of K (K with local falsum),
the base logic we get by restricting L F in K so that all references are local to one
world. Here, unlike in K, we cannot propagate L freely from one world to another
(Proposition 38). We argue that though certain modal logics can be formalized in
extensions of K¥, the system lacks basic properties, such as duality between O and <
(Proposition 40) or normal form derivations (Proposition 42), which we might look
for in a ‘good’ formalization.
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4.1 Global Falsum

We begin by observing that in K, and therefore in K + 7, L propagates ‘globally’
between all worlds. We call this property global falsum, and as an immediate conse-
quence of L E (where no assumptions are discharged) we have:

Fact 23 The rule zj—i gf is derivable in K.

Where possible, we follow Prawitz [18]; like him, we introduce some restrictions to
simplify the development. We consider the (functionally complete) L, —, O fragment
of the system given in Section 2.1, where we restrict applications of L F to the case
where the consequence z: 4 is atomic (i.e. A is atomic). These restrictions are justified
by the two following propositions.

Proposition 24 The connectives O and < are interdefinable in K.

Proof We define ©A as -0-A4, and show that the rules for & are derivable.
z:0-A' z R
[ ] Y g

E
—A :A
A zR y: y-a
Teon O vl o o
z: L g el
$:—|D—|A -
wﬂPngz
[2:B— 1]3 z:B
mang =l o —F
z:0A 2:B ~ & -t (2)
Z:B CE y'_‘A 2
z:—0-4 z2:0-4 Dé,
z:l 3 )
z:B LE

Dually, we can take < as primitive and derive the rules for O.

Proposition 25 If T', A g z:A, then there is a derivation of z:4 from T', A in the
1,—,0 fragment of K, where the consequences of applications of L F are atomic.

Proof Substitute applications of ©I and OF as in (1) and (2). We show that any
application of | ¥ with a non-atomic consequence can be replaced with a derivation
in which L F is applied only to lwffs of smaller degree. By Proposition 24, there are
two possible cases, depending on whether the conclusion is :A — B or z:0A.

Case one:

[z:A — B! [z:A4)®

[z:B — 1]? z:B N —E
[z:(A —- B) — 1] L o
yHJ_ ~ z:(A— B)—> L -

= II
z:A— B LE y: L

— 1FE?

z:B I
zA—>B



Case two:

[y:A — 1]° y 0B
1 — F
[z:04 — 1] Y-
— of
II - r:l !
y: L \E z:04 > 1
z:0A4 yl_—IJ_
:—A 1E?
y.
z:0A ore

Conclude by iterating the transformation.

An immediate consequence of this is the equivalence of the restricted and the unre-
stricted ND system. We will therefore refer to both of them as K.

Definition 26 Any lwff 2:4 in a derivation is the root of a tree of rule applications
leading back to assumptions. The lwfls in this tree other than z:4 we call side lwffs
of z:A in the derivation. A mazimal lwff in a derivation is an lwff that is both the
conclusion of an introduction rule and the major premise of an elimination rule.

A maximal lwff can be removed from a derivation by a reduction step. Two possible
configurations (for — and O) result in a maximal lwff in a derivation. They, and their
corresponding reduction steps are:

ATl
[z:4] 1,
1T z:A
.Z:B B — Il 1-,[2 - ]-_.Il (3)
T:A — 5 Z: S E z:B
[z Ry]'
A i @)
y: ) ~  Iz/y 4
z:0A DzIA xRz oF z:A

where I1[z/y] is obtained from II by systematically substituting z for y, with a suitable
renaming of the variables to avoid clashes. Note that we only show the part of
the derivation where the reduction actually takes place; the missing parts remain
unchanged.

Definition 27 A derivation is in normal form (is a normal derivation) if it contains
no maximal lwffs.

Theorem 28 Every derivation of 2:4 from I'; A in K reduces to a derivation in
normal form.

Proof IfIIis a derivation of z:A from I', A in K, then from the set of maximal lwffs
of II pick some y:B which has the highest degree and has maximal lwffs only of lower
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degree as side lwffs. Let II' be the reduction of II at y:B. II' is also a derivation of
z:A from T'; A in K and no new maximal lwff as large, or larger than y:B has been
introduced. Hence, by a finite number of similar reductions we obtain a derivation of
z:A from I'; A in K containing no maximal lwffs.

Since derivations in a Horn relational theory 7Ty cannot introduce maximal lwffs (and
all the rwffs are of the form z R y), by minor modifications to the above, e.g. substitute

I,
z R
Corollary 29 Every derivation of z:A4 from I'; A in K + Ty reduces to a derivation
in normal form.

p for z R z in (4), we immediately have:

Definition 30 B is a subformula of A iff (i) A is B; or (ii) Ais A"’ - A" and B is
a subformula of A’ or A”; or (iii) A is A’ and B is a subformula of A'. Given a
derivation I', A F z: 4, let S be the set of subformulae of the formulae in {C | 2:C €
LU {z:A}}, i.e. S is the set consisting of the subformulae of the assumptions I' and
of the goal z:A. We say that ', A F z:A4 has the subformula property iff for all lwffs
y:B used in the derivation (i) B € S; or (ii) B is an assumption B’ — L discharged
by an application of LE, where B' € S; or (iii) B is an occurrence of L obtained by
— E from an assumption B’ — 1 discharged by an application of 1 F, where B’ € S.
We will sometimes speak loosely of y:B being a subformula of z: 4, meaning B is a
subformula of A.

In other words, analogous to [18], we define I'; A F z:A4 to have the subformula
property iff for all y:B in the derivation, either B is a subformula of the assumptions
or the conclusion of the derivation, or B is the negation of such a subformula and is
discharged by LE, or B is an occurrence of | immediately below the negation of a
subformula.

Fact 31 If II is a normal derivation of z: A4 from I', A in K or K+ 7y, then II satisfies
the subformula property.

So far, we have considered extensions of K with Horn relational theories. There is,
however, no reason why we should not have relational theories that make use of an
arbitrary logic. We just have to extend the language and add appropriate rules and
axioms. However, irrespective of which logic we allow in the labelling algebra, the
rules of K dictate that the only way that derivations there can contribute to 1wff
derivations is via propositions of the form z R y, thus our normalization theorem for
K in fact extends to K extended with an arbitrary relational theory 7. To summarize,
by Proposition 25, Theorem 28, Corollary 29, and Fact 31, we have:

Fact 32 In the logic K + T the two parts of the proof system are strictly separated:
Iwff judgements can depend on rwiff judgements, but not vice versa. Thus any normal
derivation of an lwff in K + 7 is structured as a central derivation in the base logic
K ‘decorated’ with subderivations in the relational theory 7, which attach onto the
central derivation through instances of OE."

"When ¢ is added explicitly, the 7-subderivations attach onto the central K-derivation also
through instances of ¢I.
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[o 2 0] (1]
0 : P Vz(p)
Y OE P2 pPLOp2 M
p 0 p1 D p2 > T P2 ok Vz(p) plt/=] e

Where, in VI, £ must not occur free in any open assumption on which p depends.

Figure 4: The rules of NDp

This enforced separation between the base logic and the labelling algebra is in the
philosophical spirit of LDSs, and it also provides extra structure that is pragmati-
cally useful: since derivations of rwifs use only the resources of the labelling algebra,
we may be able to employ theory specific reasoners successfully to automate proof
construction. However, in exchange for this extra structure there are limits to the
generality of the formulation.

Consider an extension of the labelling algebra to a full first-order theory. To keep
distinct the syntax of the base logic from the labelling algebra, we will use connectives
from boolean logic — @ (falsum), D (implies), V — to build relational formulae in
the labelling algebra; as notation, we henceforth assume that the possibly subscripted
variable p ranges over such formulae. First-order properties of R are now added as
axioms (or rules) directly in their full form, and the first-order relational theory Tr is
obtained by extending NDp, (the first-order ND system of R) with a collection Cr of
such axioms. For example, for restricted (7, j,m,n) convergency and for irreflexivity
we add:

- . rconv (schematic)
VaVyVz((z R* y Nz R? 2) D Ju(y R™ u Nz R™ u))

m irreﬂ

The rules of NDp, are given in Figure 4; formulae over other connectives (e.g. ~ (not),
N (and), U (or), 3) and corresponding rules are defined as usual, and we will explicitly
use them in the following. We have:

Theorem 33 There are modal logics corresponding to Kripke frames with accessi-
bility relation defined by a collection Cr of first-order axioms that are not correctly
represented in K + 7 with 7p = NDg + Cg.

Proof We give an example. According to [23, p.173], the Kripke frame defined by
C={VavVyVz((z RyNnzR2z)D(yRzUzRy)) }
corresponds to the modal logic with axiom schema

-0(0A - B) - O(OB — A).
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If we assume that A and B are different sentence letters, then a normal proof of this
in K + NDg + C must have the form

[:-0(0A4 — B)]' [z Ry]* [y:0B]®
i

y:A

IR I3
OB - A

Y or?

z:0(0B — A)
z:-0(0A - B) - 0O(0OB— A

What might IT be? We can use Fact 31 to explore all the possibilities. Since A is a
sentence letter, IT must end in an application of an elimination rule; by examining
the possibilities we see that it must be an application of L F, since clearly it is not
possible to derive y:A directly from the available hypotheses using other elimination
rules. Thus the only candidate for II is

— It
)

WRMQwﬁM;mR45pﬂMG
R
[y:DB]3 Y Rz
z:B
Z:E|A—_>B_) 5
[z:-0(0A4 — B)]* z:0(0A — B) oI

z: L 4 )

OF

where Il is a derivation purely in the relational theory NDg + C. But
xRy, t Rz y R zin NDg+ C,

so K + NDg + C cannot prove the characteristic axiom for the frames defined by C,
i.e. K+ NDg + C is not complete with respect to the semantics.

Clearly, if R were also symmetric, then ¢ R y,z R z F y R z. Hence, this particular
counter-example to completeness does not hold for extensions of the logic KB, for
which, however, other counter-examples can be found. Note also that incompleteness
can be shown by means of other modal formulae, but the provability of the corre-
sponding modal axiom is philosophically the first requirement to be fulfilled by the
addition of a relational rule. For instance, by similar reasoning, we can show that
z:04 — A does not follow from K + NDg + {Vz3y(z R y)}.

4.2 Universal Falsum

The reason for the incompleteness of K + 7z in the proof of Theorem 33 is easy to
identify; we could imagine replacing IIg above with

e Ryl [ R4 [y Rz > 0]

[2:04]° zRy
[y—A]* y:A -

L
Y= &

y Rz 0E"

E

-E
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since we can show that
TRy, Rz,yR2D0F 2 Ryin NDg + C.

What we need is some rule * to allow us to propagate falsum not only between worlds,
like gf, but also between the base logic and the relational theory; i.e. collapsing z: L
and 0 together. We can add rules

z:l 0
0 uh z: L uf>
to K to get the system K% which has what we call a universal falsum. Clearly with
universal falsum we lose the separation between the two theories described in Fact 32.

Fact 34 In the logic K% (and, a fortiori, in K% + 7z) the two parts of the proof
system are not separated: lwff judgements can depend on rwif judgements, and vice
versa.

In fact, we can show that K* + 7z, unlike K 4+ 7, is essentially equivalent to the usual
semantic embedding of modal logics in first-order logic.

Definition 35 (-)* is a translation of labelled propositional modal logic into first-
order logic:

@* ~ 1 (z:L)* ~ L
(z Ry)* ~ R(z,y) (zp)* ~ P(z)
(1D p2)* ~ (p1)" = (p2)*  (wA—=B)* ~ (:4)" — (¢:B)"
(Vz(p))* ~ Va((p)*) (z:04)" ~ Vy(R(z,y) = (y:4)")
(A ~ {(p)*|peA} O ~ {(z:4)* |2:A €T}

Theorem 36 Let C'r be an arbitrary collection of first-order axioms about R, and ¢
an arbitrary lwff or rwff. We have that T', A I ¢ in K¥4+NDg+Cp iff Cg, (T')*, (A)* +
(p)* in first-order logic.

Proof Since reasoning about labels is directly translated, we only treat the case
when ¢ in an lwff. Left to right is simple, since we can find derived rules in first-order
logic corresponding to each rule of K. For instance, for OI we proceed as follows
(the other rules are dealt with similarly):

- [R(z, )
- (4 A)* 1 5)
B2 op R(e,y) > @A)

Vy(R(z,y) — (y:4)") [= (z:04)]

(The eigenvariable condition for VI holds since it holds for OI). The other direction is
trickier. However, we know that derivations in first-order logic have expanded normal
forms [19], thus we can assume II is a normal derivation of Cg, (I')*, (A)* I (z:4)*,
and observe that it is possible to translate this derivation directly into K“4+NDg+Cg;
e.g. if we reverse ~» in (5), we can see that since a normal derivation of (z:0A4)*
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must have exactly the form (the sequence of introduction rules) given there, and, by
induction, the same translation can be performed on the subderivation of (y:A4)* from
(z R y)*, it is possible to translate this into a derivation in K% + NDg + Cr. We
can do the same with the other rules. All we have to do is, occasionally, insert extra
rules translating between falsum for rwffs and falsum for lwffs.

Under the assumption (cf., for instance, [14]) that semantic embedding in first-order
logic is sound and complete with respect to the appropriate Kripke semantics, we
have that:

Corollary 37 K% + Tz is sound and complete.

4.3 Local Falsum

In the rules of K, rwffs interact with lwffs through the OF rule and this changes the
label of the major premise. But this is not the only rule which changes worlds; | F, as
we have discussed, also has this property. To complete our investigation of alternative
formulations, we consider the other end of the spectrum from universal falsum where,
by restricting L E, falsum is local and cannot move arbitrarily between worlds:

[z:A - 1]

z:-L )
z:A LEY

Call K¥ the system obtained from K by replacing LE with its restricted form LEY.
Note that in K¥ we can propagate L forwards indirectly: given z:1 we have z:01,
and thus y: L when z R y; i.e.

r: 1l
r:O1

LEY
y: L

nyDE (6)

But we cannot propagate L to an arbitrary world:
Proposition 38 There is no derivation of y: L from z:1 in K¥.
To show this we prove:

Lemma 39 If there are no applications of L F in a derivation in K then normalization
of the derivation cannot introduce one.

Proof By examining the transformationsinvolved in reducing a derivation to normal
form.

Proof (of Proposition 38) Since K% is a fragment of K, a derivation IT of y: L from
z:1 in K¥ would have a normal form II in K. Since any such derivation needs to
make use of L E, which, by Lemma 39, must already be present in the un-normalized
form of II, no such derivation can exist in K¥.

In the same way, we can prove that, since gf is not derivable, Proposition 24 fails for
KY.
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Proposition 40 The connectives O and < are not interdefinable in K¥.
We need:

Lemma 41 A normal form derived rule in K suitable for the substitution (1) in
Proposition 24 involves a step application

[z:A4 - 1]

y:'J_
z:A LE
where we are not able to assume that y R z.
Proof By examination of the possible normal derivations.

Proof (of Proposition 40) Consider case (1) in the proof of Proposition 24. As-
sume II is a suitable derivation in K¥, then, since II is also a derivation in K, it has a
normal form II’ in K. However, by Lemmata 39 and 41 such a derivation in K¥ does
not exist, since II', and thus II, must contain unrestricted applications of LFE.

Proposition 40 shows that K¥ is not in general suitable for formalizing modal logics,
since we are not able to propagate falsum to inaccessible worlds. However it is easy
to show that in fact we only ever have to deal with worlds accessible in some way
from each other. Given, as we have observed, that we can propagate L forwards in
KY, if R is symmetrical we also have a backwards propagation:

z: L iy Y Rz
f
z:O1 LE xRy

y:L

symm
OE

Thus K¥ can be used to formalize certain logics after a fashion (if the relational theory
Tr is inconsistent or if R is universal, so that z R y for all z,y, then we get this much
more simply).® However the resulting formalization is fundamentally unsatisfactory,
since it lacks important metatheoretic properties that we get in K; namely, we have:

Proposition 42 Derivations in K¥ do not have normal forms satisfying the subfor-
mula property.

Proof As we observed in (6), there is a derivation of y: | from R y and z: L in K¥.
However, there cannot be a normal one satisfying the subformula property (z:0L is
not a subformula in (6)).

8Given that S5 is correct with respect to the class of universal frames [6, p.178], it is possible
to prove that T, A I z:4 in KT5 iff T', A - z:A4 in K¥T5, since, when R is universal, O and < are
interdefinable, and LE and LE¥ are interderivable (but the derivations are not normal).
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K = Pure +

types (* Definition of type constructors *)
label,o O

arities (* Addition of the arity ‘logic’ to the existing types *)
label, o :: logic

consts (* Logical Connectives and Judgements L and A *)

False HE N

-—> :: "[o, o] => o" (infixr 25)

box :: "o => o ("[1_" [50] 50)

dia i1 "o => o" ("<>_" [50] 50)

L :: "[label, o] => prop" M : 2" [0,0] 100)

A :: "[label, label] => prop" (. R )" [0,0] 100)
rules (* Axioms representing the object-level rules )

FalseE "(x:A --> False ==> y: False) ==> x:A"

impI "(x:A ==> x:B) ==> x:A --> B"

impE "x:A ==> x:A --> B ==> x:B"

boxI "(My. (x Ry ==> y:4)) ==> x:[]A"

boxE "x:[JA ==> x R y ==> y:A"

dial "y:A ==> x Ry ==> x:<3A"

diaE "x:<>A ==> (!!y. y:A ==> x R y ==> z:B) ==> z:B"

end
Figure 5: Isabelle Encoding of K

5 Implementation and its Correctness

5.1 Implementation

We have used the Isabelle system [17] to implement and interactively construct deriva-
tions with the modal logics we presented. The logical basis of Isabelle is a natural
deduction presentation of minimal implicational predicate logic with universal quan-
tification over all higher-types [16].° We call this metalogic M; to prevent object/meta
confusion we use A to represent Isabelle’s universal quantifier and = for implication.

An object logic is encoded in Isabelle by declaring a theory, which consists of a
signature and axioms, which are formulae in the language of M. The axioms are
used to establish the validity of judgements, which are assertions about syntactic
objects declared in the signature [12]. Derivations are constructed by deduction in
the metalogic.

In our work, we declare a theory Mk, which encodes K. The signature of Mg
declares two types label and o, which denote labels and unlabelled modal formulae,
respectively. Connectives and modal operators are declared as typed constants over
this signature, i.e. box of type o = 0. There are two judgements, which correspond
to predicate symbols in the metalogic: £ and .4, which stand for ‘Labelled Formula’
and ‘Accessibility’. £(z, A) and A(z,y) respectively express the judgements that z:A

9Isabelle’s logic also contains equality (that of the A-calculus under «, 8, and 7-conversion), but
we do not need to consider this, since, in the analysis of derivations in the metalogic, we shall identify
terms with their 87 normal forms. This is possible as terms in our metatheories are terms in the
simply-typed A-calculus (with additional function constants) and every term can be reduced to a
normal form that is unique up to a-conversion.
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is a provable lwff and that x R y is a provable rwff. The axioms for £ are a direct
axiomatization of the rules in Figure 1.

Figure 5 contains our entire Isabelle declaration for the theory Mgk. Some brief
explanations are in order (further details on Isabelle syntax and theory declarations
can be found in [17]). First, we shall use typewriter font for displaying concrete
Isabelle syntax which has come from actual Isabelle sessions. Pure encodes Isabelle’s
metalogic M. The operators !! and ==> are concrete syntax in Isabelle for universal
quantification (A) and implication (=) in M. The use of mixfix operators, declared
with information for Isabelle’s parser, allows us to abbreviate box with [], dia with
<>, L(x,A) with x:A, and A(x,y) with x R y. Finally, note that, in axioms, free vari-
ables are implicitly outermost universally quantified, and that comments are added
between ‘(*’ and ‘*)’.

Logics L = K + T are formed by extending Mg with appropriate theories M,
which encode 7. The axioms for A4 are given by directly translating Horn relational
rules to axioms in M: each rule corresponds to an iterated (Curried) implication
where the assumptions of the rule together imply the conclusion.

Theories in Isabelle correspond to instances of an abstract datatype in the ML
programming language and Isabelle provides means for creating elements of these
types, extending them, and combining them. We use these facilities to combine and
extend our modal theories. This is best illustrated by an example. KT is obtained by
extending K with the axiom refl; this is specified as follows.

KT = K +
rules

refl "x R x"
end

Again, recall that outermost quantifiers are left implicit, so the above is shorthand
for adding !!'x. x R x as an axiom to K. Similarly, K4 is formed by extending K with
trans.

K4 = K +
rules

trans "x Ry==>yRz==>xR2z"
end

We may now obtain KT4, i.e. S4, by similarly extending KT (or K4 or ). Alternatively,
we may apply the ML-function merge_theories to KT and K4. As remarked above,
KT4 inherits theorems and derived rules from its ancestor logics. As an example,
consider the KT4-theorem x:[1A <-> [1[]A. The formulae =x:[JA --> [1[]A and
x: [1[JA --> []A are theorems of K4 and KT, respectively:

[« Ry]> [y R:z]'

[z:0A]3 z Rz trans
z:A 1
y:0A DIF [z:004]' zR=x ;eg (M)
]
z:004 3 z:0A4 y
704 - ooad 1 2004 504 1
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In the appendix, we show how these theorems are interactively proved in Isabelle in
their corresponding theories and then applied to conclude:

r:04 - O0A 004 — OA
z:04 « O0OA

I

(Note that this requires adding a definition of +» to our theory, which can be done in
the standard way.)

As a further example of theory definition, K2 is obtained by extending K with the
constant function symbol g and with the axioms conv1 and conv2:

K2 = K +
consts
g :: "[label,label,label] => label"
rules
convil "x Ry ==>x R z==>yR g,y,z)"
conv2 "x Ry ==>x R z==>2zR gx,y,z)"
end

In the appendix we use this theory to prove z:00A — OCOA, (see the proof in
Section 2.4), which is the characteristic axiom of K2. The examples we work through in
Isabelle should help convince the reader that the approach we have taken to interactive
theorem proving for modal logics is both simple and flexible. In particular, it supports
the hierarchical structuring of theories and inheritance of theorems between them.

5.2 Correctness

When one logic encodes another, correctness of the encoding must be shown. A tech-
nique established with the Edinburgh LF [12] is to demonstrate a correspondence
between derivations in the object-logic and derivations in the metalogic by consid-
ering certain normal forms for derivations in the metalogic. In what follows, we
abuse notation and write £(T') and A(A) for the sets {£(z1, 41),...,L(zn, A,)} and
{A(J;layl)a tee 7A($m7ym)}

Definition 43 My, is faithful (with respect to L) iff (1) £(T'), A(A) Fum, L(z, A)
implies ', A b, 2:A, and (2) £(T), A(A) Fam, A(z,y) impliesI',Abp 2 Ry. My is
adequate (with respect to L) iff the converses of (1) and (2) hold.

Lemma 44 M is faithful.

Proof Following Prawitz, call a thread a sequence of formulae in a derivation tree
leading from some assumption to the root. A branch in a derivation is the initial
segment of a thread ending at either the first minor premise of a — F rule encountered,
or the conclusion of the derivation if no such minor premise occurs. We use the fact
(cf. [17]) that derivations in My, have an ezpanded normal form in which there are no
maximal formulae and each branch leads to a minimum formula of the form L(z, A)
or A(z,y).

The proof proceeds by induction on the size of the expanded normal form of
M -derivations of £(z, A) and of A(z,y) from L(T') and A(A). In the base case,
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Az, v)!

AeAA((Ay(A(z,y) = L(y, 4))) = Lz, 0A)) L(y, B)

M(N(AGy) = £, A) = £6,0A) " Aew) = £w.B) L

Ay(A(z,y) = £(y, B)) = £(z,0B) N(AGy) = L. B) "~
L(z,0B)
NeNyNz(A(z,y) = (Alz, 2) = Ay, 9(z,y, 2)))) AE

No(AGuy) > (Al ) = Alysglurs,2))

No(AGu,) = (A, 2) > A@,gw,n,2))
Alu,v) = (A, w) = A, g(u,v,w))) Aw)

Ay, w) = A(v, g(u, v, w)) Alu, w) N

A(v, g(u, v, w))
Figure 6: The metalevel derivations formalizing OI and convl

if L(z,A) follows from an assumption in £(T'), then z:4 is an assumption in I, so
trivially ', A by z:A. The situation is similar for a derivation of 4(z,y) from an
assumption in A(A).

In the step case, a branch begins with an axiom followed by a sequence of elim-
ination rules. We proceed by showing that the application of each axiom in My
corresponds to an object level inference in L. All of the cases are simple and we give
two representative cases below: the axiom boxI from Mk and a Horn axiom from
M.

In the case of boxI, let z:4 be 2:0B for some 2z and B. The M-derivation
must have the structure shown at the top of Figure 6. It contains an M -derivation
of Ny(A(z,y) = L(y,B)) from L(I") and A(A), which, by expanded normal form,
consists of an M -derivation of L(y, B) from £L(T") and A(A)U.A(z,y), where y is not
free in the assumptions, followed first by a = I, discharging the assumption A(z,y),
and then by a AI. An L-derivation of y:B from I" and A U {z R y}, where y is not
free in the assumptions, is given by the induction hypothesis. Applying OI gives an
L-derivation of z2:0B from I' and A.

Alternatively, consider a Horn axiom which is part of the relational theory corre-
sponding to My. The M-derivation must comprise a sequence of AE steps, one for
each quantifier, followed by a sequence of = FE steps, one for each premise. For con-
creteness, consider the axiom convl, where z R y is v R g(u,v,w) for some u,v,w.
The M-derivation must have the structure shown at the bottom of Figure 6. L-
derivations of u Rv and 4 R w from I' and A are given by the induction hypotheses.
Applying conv! gives an L-derivation of v R g(u,v,w) from T' and A.

Lemma 45 M is adequate.

Proof By induction on the structure of the L-derivations of z:4 and of z R y from
I and A. The base cases are trivial, and we treat only the step cases.
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First, we consider the propositional and the modal rules (i.e. the rules of K)
individually. For example, for OI, let 2:A be 2:0B, and OI is applied to an L-
derivation of y:B from I" and AU{z R y}, where y is not free in the assumptions. An
M -derivation of L(y, B) from £L(I') and A(A) U A(z,y), where y is not free in the
assumptions, i.e. an M-derivation of Ay(A(z,y) = L(y, B)) from L(T") and A(A), is
given by the induction hypothesis. Conclude by building an M -derivation like that
at the top of Figure 6.

In second case, a relational rule has been applied. Consider the case of convi.
z Ryisv R g(u,v,w), and convl! is applied to L-derivations of u R v and u R w from
I and A. Mp-derivations of A(u,v) and A(u,w) from £(T") and A(A) are given by
the induction hypotheses. Conclude by building an M -derivation like that at the
bottom of Figure 6.

By Lemma 44 and Lemma 45 we have that:
Theorem 46 M is faithful and adequate.

6 Related Work

Our work combines an LDS presentation of modal logics with a logical framework
to provide a natural deduction presentation of modal logics in a uniform way based
on their semantics. Here we compare this with related work in natural deduction,
Labelled Deductive Systems, and semantic embedding.

6.1 Natural Deduction

Prawitz [18] discusses a rule for necessitation (O) introduction in S4 and S5 with the
‘non-local’ side condition that all the supporting assumptions are modal (i.e. the main
connective is O), in the case of S4, or modal formulae and their negation, in the case of
S5. However, such a rule cannot be formalized by a pure proof rule, i.e. one that may
be applied in any context of assumptions; hence it cannot be directly encoded within
a logical framework. A solution to this problem is given, as mentioned earlier, in [2,
§4.4], where the proof system is factored into two ordinary pure single-conclusioned
consequence relations. Unfortunately, the result is far removed from the standard
presentations based on accessibility relations or characteristic axioms. Also there is
no attempt to modularize structure or correctness: only a particular modal logic is
analyzed and it is not apparent how to generalize the results in a uniform way.

Another approach to the formalization of ‘non-local’ conditions in a logical frame-
work is to manage assumptions explicitly with sequents, e.g. [9, 26]. The Isabelle
system distribution contains such an encoding due to Martin Coen which uses several
auxiliary judgements to give complex encodings of T, S4, and S4.3. Similar problems
would result from trying to formalize directly the kind of prefixed tableaux systems
suggested, for example, by Fitting [9].

6.2 Labelled Deductive Systems

Our work is inspired by the LDS approach proposed by Gabbay, and further devel-
oped for modal logics, in parallel with our work, by Russo [20]. Gabbay introduces
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LDSs as a general and unifying methodology for presenting almost any logic [10].
To support this generality his LDS metatheory and presentations are based on a no-
tion of diagrams and logic data-bases, which are manipulated by rules with multiple
premises and conclusions. For example [10, p.57] presents the rule for CF as

5:OB
create r, s < r and r:B

the application of which updates a modal data-base with the two new conclusions (a
rule to the same effect is given in [20]). The formal details are quite different from
our proposal, where the rule for OF given in Figure 1 is represented in the metalevel
of Isabelle by the following axiom, which directly formalizes a natural deduction rule:

AzAzNANB(L(z,CA) = (Ay(L(y, A) = A(z,y)) = L(z,B)) = L(z,B)).

There is another difference between our work and theirs that is worth emphasizing.
In our work, we have identified an important property of the structured presentation of
logics, their combination, and extension. Namely, there is tension between modularity
and extensibility: a narrow interface between the base logic and labelling algebra
provides a better (more modular) metatheory, but limits extensions to the labelling
algebra. In our approach, the use of a metalogic with different judgements serves to
separate the base logic and the labelling algebra. This separation is critical: it is only
when we attempt to modularize and separate these two theories formally and define
a precise interface between them that we see that only limited modularity (i.e. there
are limits to the relational theories) is actually possible.

Of course, in implementing particular LDSs Gabbay and Russo could similarly
separate theories. The precise nature of this would be reflected in the rules they
choose for propagating results between data-bases. It should be the case that if their
rules enforce a similar separation, then they will encounter similar limitations to those
reported here. That is, the problems we identify have some generality and should ap-
pear in other frameworks where theories are separated and results are communicated
in a limited way between them.

The kind of labelled natural deduction encoding we employ is closest to the work
of Simpson [22]. However his focus, proof techniques, and applications are based on
using LD Ss to investigate intuitionistic versions of modal logics, and his correctness
considerations are quite different. Moreover, his relations have no independent theory
with which one can work.

Note that the universal falsum approach is adopted explicitly in [20]. Simpson’s
approach is different, and difficult to compare: he treats rwifs only as assumptions in
inferences of lwfls via his ‘geometric’ rules, which are derivable in our systems. An
example of an approach in which, like with local falsum, local inconsistency does not
imply global inconsistency, is the work of Giunchiglia and Serafini [11], who show that
particular ‘multicontext systems’, where (indexed) formulae are translated between
contexts using ‘bridge rules’, define the same classes of provable formulae as certain
standard modal logics. However their approach is, in general, radically different from
ours, and not comparable.
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6.3 Translation and Semantic Embedding

We conclude by mentioning work on translating modal logics into first-order logic,
e.g. [14, 15]. As sketched in Definition 35, these approaches typically label all subfor-
mulae with worlds and combine the modal and relational theory in a theory suitable
for standard first-order provers. The emphasis is on automatic, but not necessarily
‘natural’, theorem proving. Moreover, by design, there is no separation between the
relational theory, any kind of base modal theory, and first-order logic itself; i.e. there
is precisely one falsum from which one can conclude arbitrary relational or labelled
formulae.

7 Conclusions

We have given a modular presentation and correctness proofs for the implementation
of a large and well-known class of propositional modal logics in the Isabelle logical
framework. Our approach is based on relational theories comprised of (Horn clause)
axioms formalizing the accessibility of worlds in Kripke frames. It demonstrates, we
think, that they fit particularly well into the logical framework setting, capture a large
class of standardly considered propositional modal logics, and have pleasant metathe-
oretic properties (e.g. one can use induction on their structure to show faithfulness
and adequacy across an infinite set of extensions). We have used similar techniques
to present quantified modal logics in a companion paper [4].

Our work has also identified an important property of the structured presenta-
tion of logics, their combination, and extension. Namely, there is tension between
modularity and extensibility: a narrow interface between the base logic and labelling
algebra can limit the degree to which we can make use of extensions to the labelling
algebra. As a consequence, there are important design decisions in implementing
LDSs whose resolution requires predicting the range of possible applications.
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Appendix. Isabelle Proof Session

In this appendix we illustrate Isabelle proofs for the examples sketched in Section 5.1.
Some brief background is required; see [17] for a full account.

Background

Isabelle manipulates rules. A rule is a formula
' vl ... vm. Al ==> ... ==> (An ==> A)
which is also displayed as follows:

'yl ... vm. [| A1l; ...; An|] ==> A

Rules represent proof states where A is the goal to be established and the Ai are the
subgoals to be proved. Under this view, an initial proof state has the form A ==> A,
i.e. it has one subgoal, namely A. The final proof state is itself the desired theorem.
Isabelle supports proof construction through higher-order resolution, which is roughly
analogous to resolution in Prolog. That is, given a proof state with subgoal B and a
rule as above, then (treating the vi as variables for unification) we higher-order unify
A with B. If this succeeds, then the unification yields a substitution s and the proof
state is updated replacing B with the subgoals s(A1),...,s(An). This resolution
step can be justified by a sequence of proof steps in the metalogic. Although rules are
formalized in a natural deduction style, they may be read as intuitionistic sequents
where the Ai are the hypotheses. Isabelle has procedures which apply rules in a way
that maintains this ‘illusion’ of working with sequents.
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Derivations

We now work through the examples given in Section 5.1. To prove the equivalence of
OA and O0OA in S4 we begin by proving the left-to-right direction in the subtheory
K4. Our proof corresponds to the first proof-tree given in (7), read bottom up; the
following proof is taken verbatim from an Isabelle session with the exception of minor
pretty-printing and omission of diagnostic output. We begin with the desired goal.

> goal K4.thy "x:[]A --> [I[]1A";
x : [JA -—> [10A
1. x : [1A ——> [1[]A

On the first line we state the theory we are using and the theorem to be proved.
Isabelle responds with the next 2 lines, which give the goal to be proved, and what
subgoals must be established to prove it. We proceed by applying our rule for impli-
cation introduction impI, which was declared in Figure 5. The command br directs
Isabelle to apply this using resolution to the first subgoal. Isabelle responds with the
new subgoal.

> br impI 1;
x : [JA -—> [O[]A
1. x : [JA ==>x: [10]A

If we read the proof state as a sequent, we must now show x : [][]A under the
assumption x : [JA. We proceed with two applications of boxI, each of which gives
us new relational assumptions, followed by boxE:

> br boxI 1;
x : [OA --> [1[]A
1. tty. [ x: [JA; xRy ] ==>y : []1A

> br boxI 1;
x : [1A --> [1[]A
1. !ty ya. [| x: [JA; x Ry; yRya [] ==>ya : A

> be boxE 1;
x : [JA imp [1[]A
1. 'y ya. [| xRy; yRya |] ==> xR ya
The theory K4 extends K with the transitivity of R. We apply transitivity using the
command be to unify one of its assumptions against an assumption in our subgoal.

> be trans 1;

x : [1A -—> [1[]1A
1. !''y ya. yR ya ==>y R ya

This leaves only one remaining goal, which is proved by assumption (ba).

> ba 1;
x : [0A --> [1[]A

No subgoals!

We can now name this theorem (LeftToRight) and use it in subsequent proofs (Is-
abelle provides unknowns, written with a ? prefix, that may be instantiated later
during unification).
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> val LeftToRight = result();
val LeftToRight = "?x : [17A --> []1[]7A"

The proof of the converse direction in the theory KT directly mirrors the second
proof-tree in (7); we give it here without further comment.

> goal KT.thy "x:[1[1A --> []A";
x : [100A --> []A
1. x : [O0A --> []A

> br impI 1;
Level 1
x : [O00A --> []1A
1. x : [100A ==> x : []A

> be boxE 1;
x : [O00A --> []A
1. x R x

> br refl 1;
x : [10]A -—> []A
No subgoals!

> val RightToLeft = result();
val RightToLeft = "?x : []7A --> 7A"

Having proved both directions, we may now combine them to prove the equivalence
in KT4.

> goal KT4.thy "x:[JA <-> [1[]1A";
x : [0A <-> [1[]A
1. x : [1A <-> [1[]1A

> br iffI 1;
x : [1A <-> [1[]A

1. x : A --> [1[]a
2. x : [1[1A --> []A

> br LeftToRight 1;
x : [JA <=> [1[]A
1. x = [101A --> []A

> br RightToLeft 1;
x : [1A <> [1[]A

No subgoals!

A final example is the derivation of the characteristic axiom for K2 based on
the extension of K given in Section 5.1. The proof directly follows that given in
Section 2.4.

> goal K2.thy "x: <>[]JA --> [I<>A";

x : <>[]A -—> [I<>A
1. x : <>[JA --> [I<>A
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> br impI 1;

x : <>[]A -—> [I<>A

1. x : <A ==> x : []<>A
> br boxI 1;
x : <>[JA --> [1<>A
1. tty. [ x @ <>0A; xRy I]
> be diaE 1;
x @ <>[JA --> [1<>A
1. "'y ya. [| xR y; ya : [14;
> br dial 1;
x @ <>[JA --> [1<>A
1. "'y ya. [l xR y; ya : [1A;
2. !y ya. [| xRy; ya : [14;
> be boxE 1;
x @ <>[JA -—> [1<>A
1. !ty ya. [| x Ry; xR ya |]
2. 'y ya. [ xRy; ya : [14;

> be conv2 1;
x : <>[JA --> [1<>A

1. !''y ya. xR ya ==> xR ya

2. !ty ya. [| xRy; ya:

> ba 1;
x : <>[JA --> [1<>A

1. !ty ya. [| xR y; ya :

> be convl 1;
x : <>[JA --> []<>A
1. 'ty ya. [| ya :

> ba 1;
x : <>[JA -—> [1<>A
No subgoals!

[14; x

[14;

[14;

R ya

==>y : <A

xRya |] ==>y : <A

x R ya |] ==> ?y3(y, ya) : A
x Rya |] ==> y R ?y3(y, ya)
==> ya R ?y3(y, ya)

x R ya |1 ==> y R ?7y3(y, ya)

x Rya |] ==>yR g(x, y, ya)
x Rya |l ==>yRg(x, y, ya)
[] ==> x R ya
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