Hybrid Languages and Temporal Logic
(Full Version)

Patrick Blackburn Miroslava Tzakova
Computerlinguistik Max-Planck-Institut fiir Informatik
Universitat des Saarlandes Im Stadtwald
66041 Saarbriicken 66123 Saarbriicken
Germany Germany
patrick@coli.uni-sb.de tzakova@mpi-sb.mpg.de

In memory of George Gargov

Abstract

Hybridization is a method invented by Arthur Prior for extending the
expressive power of modal languages. Although developed in interesting
ways by Robert Bull, and by the Sofia school (notably, George Gargov,
Valentin Goranko, Solomon Passy and Tinko Tinchev), the method re-
mains little known. In our view this has deprived temporal logic of a
valuable tool.

The aim of the paper is to explain why hybridization is useful in tem-
poral logic. We make two major points, the first technical, the second
conceptual. Technically, we show that hybridization gives rise to well-
behaved logics that exhibit an interesting synergy between modal and clas-
sical ideas. This synergy, obvious for hybrid languages with full first-order
expressive strength, is demonstrated for three weaker local languages, all
of which are capable of defining the Until operator; we provide simple
minimal axiomatizations for all three systems, and show that in a wide
range of temporally interesting cases, extended completeness results can
be obtained automatically. Conceptually, we argue that the idea of sorted
atomic symbols which underpins the hybrid enterprise can be developed
much further. To illustrate this, we discuss the advantages and disadvan-
tages of a simple hybrid language which can quantify over paths.

1 Introduction

Arthur Prior proposed using modal languages for temporal reasoning more than
40 years ago, and since then the approach has become widespread in a variety
of disciplines. Over this period, a wide range of (often very powerful) modalities
has been used to reason about time. This is unsurprising. After all, different
choices of temporal ontology (such as instants, intervals, and events) are rel-
evant for different purposes, and (depending on the application) considerable
expressive power may be needed to cope with the way information can be dis-
tributed across such structures. But inventing new modalities is not the only

way of boosting modal expressivity. There is a largely overlooked alternative
called hybridization, and this paper explores its relevance for temporal logic.

Hybridization is best introduced by example. Consider the following sen-
tence from the language we call ML + V:

Va(z — —Ox).

The x in this expression is a state variable, and all its occurrences are bound
by the binder V. Syntactically, state variables are formulas: after all, the ex-
pression z — —<x is built using —, — and < in the same way that p — =Cp
is. Semantically, however, state variables are best thought of as terms. Our
semantics will stipulate that state variables are satisfied at exactly one state in
any model. In effect, state variables act as names; they ‘label’ the unique state
they are true at.

The use of ‘formulas as terms’ gives hybrid languages their unique flavor:
they are formalisms which blend the operator based perspective of modal logic
with the classical idea of explicitly binding variables to states. Unsurprisingly,
this combination offers increased expressive power. The above sentence, for
example, is true at any irreflexive state in any model, and false at all reflexive
ones. No ordinary modal formula has this property.

Now, the language ML + V is not the only hybrid language, and for many
purposes it is not the most natural one. One of the key intuitions underlying
modal semantics is locality, and it is intuitively clear (we shall be precise later)
that V is not local; as our notation suggests, V quantifies across all states. So,
if we want a local hybrid language, ML + V is not a suitable choice.

But what are the alternatives? To the best of our knowledge only one has
been considered, namely the binder we here call |. Now, | does something
simple and natural: it binds a variable to the current state. Unfortunately,
while ML+ | is a local language, it has two drawbacks. First, it is not expressive

IThe literature on hybrid languages consists of a handful of papers published over the last
thirty years by researchers with very different interests. Confining ourselves to the main line
of development, the idea can be traced back Prior (1967), and the posthumously published
Prior and Fine (1977) contains some of Prior’s unfinished papers on the subject together with
an appendix by Kit Fine. Prior’s concerns were largely philosophical; technical development
seems to have started with Bull (1970). Bull investigated a hybrid temporal language con-
taining the V binder and the universal modality A, and introduced the idea of quantification
over paths. In addition, he initiated the algebraic study of such systems. The paper never
attracted the attention it deserved; in fact, apart from citations in the hybrid literature, the
only mention we know of is from Burgess’s survey of tense logic:

Other hybrids of a different sort — not easy to describe briefly — are treated
in an interesting paper of Bull [1970]. (Burgess (1984, page 128)).

(This is probably the first use of ‘hybrid’ in connection with such languages.) The idea was
independently invented by the Sofia School as a spin-off of their investigation of modal logic
with names. The best guide to the Bulgarian tradition is the beautiful and ambitious Passy
and Tinchev (1991), drafts of which were in circulation in the late 1980s. Hybridization is
discussed in Chapter III and deals with Propositional Dynamic Logic enriched with both V
and the universal modality; see also Passy and Tinchev (1985) and the brief remarks at the
end of Gargov, Passy and Tinchev (1987).

Recent papers on the subject include Goranko (1994) (probably the first published account
of hybrid languages containing the | binder), Blackburn and Seligman (1995), and Selig-
man (1997) (which investigates hybrid natural deduction and sequent calculi for applications
in Situation Theory), and Blackburn and Tzakova (1998). Also relevant are Gargov and
Goranko (1993), Blackburn (1993), and Blackburn (1994); these look at modal and tense
logics enriched with nominals (in effect, the free variable fragments of hybrid languages).

enough for many applications (for example, we shall show that it is not strong
enough to define the Until operator). Second, and in stark contrast to ML + V
which has an elegant axiomatization, the only known axiomatization for ML+
(see Blackburn and Tzakova (1998)) makes use of a rather complex rule of proof
called COV.

What are we to do? The paper explores this issue in depth. We develop three
increasingly general answers, each of which builds on its predecessor. First we
introduce a second local binder called {}*. The |}* binder is a universal quantifier
over accessible states. It is strong enough to define Until, and moreover — as
long as we are content to work with transitive models — the minimal temporal
logic of ML 4 | + {}* (that is, the set of formulas valid on strict partial orders)
has a straightforward axiomatization. This is pleasant, but leads in turn to a
new question: how can we eliminate the need to assume transitivity?

Inspection of the completeness proof shows that the combination of tran-
sitivity and {J* is really a way of ensuring communication between parts of
formulas (essentially it allows us to keep track of the way we instantiate binders
at neighboring states). So the question becomes: how do we achieve better com-
munication in hybrid languages? We give a preliminary answer by replacing the
underlying forward-looking modal language by the bi-directional language of
tense logic. As we shall show, the interaction of the forward and backward
looking operators in tense logic gives us all the communication we require, and
by adapting a method from Gabbay and Hodkinson (1990) we can axiomatize
the formulas of TL+] that are valid on all models.

So it remains to put the pieces together: can we transfer the insight about
communication back to forward-looking-only modal languages while maintain-
ing locality? Yes, we can. We do so by introducing an operator called @ which
retrieves the value stored by |. As we shall see, this retrieval operator is the
missing link which allows us to give a complete treatment of local hybrid logics
involving | — not only can we handle the minimal logic of ML+]+@ rather
straightforwardly, we automatically get completeness results for a wide class of
extended logics; this includes results for many frame properties that are not
modally definable, such as discreteness.

These completeness results and the model constructions on which they are
based are the technical core of the paper, but to close the papers we need to
change gears — there is an important conceptual point that needs to made
about hybridization and its relevance to temporal logic: hybridization is not
simply about quantifying over states. Rather, hybridization is about handling
different types of information in a uniform way. To be concrete, for most of this
paper we work with atomic formulas that allow us, in a sense, to ‘name’ states;
that is, we will be combining termlike information with arbitrary information.
But why stop there? For example, why not introduce atomic formulas that
range over intervals, or paths, or events? After all, such entities are needed in
many kinds of temporal reasoning. So, to conclude the paper we briefly discuss
a hybrid language for working with paths, indicating both the promising and
problematic aspects of the extension.

But we are jumping ahead. There is much to be done before we can usefully
discuss such ideas, so let’s call a halt to our introductory remarks and start
developing the idea of hybridization systematically.

2 The basic modal language

One of the simplest languages for temporal reasoning is the propositional modal
language that contains just two modalities: an operator O (read as: at all future
states) together with its dual operator < (read as: at some future state). For
most of this paper we will be working with various hybrid extension of this
simple language (which we will call ML). The purpose of the present section
is to fix notation and terminology, to remind the reader of various standard
concepts (in particular, generated submodels and bisimulations), and to present
a wish-list of properties for hybrid temporal languages.

Given a (countable) set of propositional symbols PROP = {p,q,r,...} the
well-formed formulas of ML are defined as follows:

WFF :=p | -¢ | @Ay | Op.

Other Boolean operators (V, —, <>, L, T, and so on) are defined in the usual
way, and we define $p to be =O-p.

ML is interpreted on models. A model M is a triple (S, R, V') such that Sisa
non-empty set of states, and R is a binary relation on S (the temporal precedence
relation); the pair (S, R) is called the frame underlying M. The valuation V is
a function with domain PROP and range Pow(S); this tells us at which states
(if any) each propositional symbol is true. Two remarks are in order. We call
the elements of S ‘states’ because this seems a reasonably neutral term that
covers a wide range of temporal entities. The reader is free to think of ‘states’
as instants of time, as intervals, or as time-stamped events; for the purposes of
the present paper, the choice between these interpretations is largely irrelevant.
What about the binary relation R? As our interest is temporal logic, we will be
particularly interested in strictly partially ordered models; that is, those models
where R is both transitive and irreflexive. However it is important to be able
to handle a wide range of binary relations (for example, in some applications
we might want to reason about a step-by-step transition graph that gives rise
to a flow of events, rather than the flow itself) so it is also useful to think about
models in which no restrictions are placed on R.

The satisfaction definition for ML is defined as follows. Let M = (S, R, V)
and s € S. Then:

M,skEp iff seV(p), where p e PROP
M, s |E - iff M,spp

M,sEpAy ff MiskEp& MsE19
M, s = Op iff Vs'(sRs' = M,s' =).

If M,s |= ¢ we say that ¢ is satisfied in M at s. If ¢ is true at all states in a
model M we say it is valid in M and write M = ¢. In what follows, we call
the set of formulas that are valid on all strictly partially ordered models the
minimal temporal logic, and the set of formulas valid on all models the minimal
logic.

Perhaps the key intuition to note about the satisfaction definition is its lo-
cality: formulas are evaluated inside models at some particular state (called the
current state), and the function of the O and < operators is to scan the states
accessible from the current state via the precedence relation R. This locality
intuition is arguably the central intuition underlying the modal approaches to

temporal logic; it is certainly the intuition which prompted Arthur Prior to pi-
oneer the “modal logic of time” (which he called tense logic). As he observed,
we are situated inside the temporal flow, and our temporal intuitions and lan-
guage reflect this internal perspective. Accordingly, it seemed to him that modal
approaches to temporal reasoning were likely to be the most revealing.?

The locality of ML has an obvious mathematical consequence: satisfaction
of ML formulas is preserved under the formation of generated submodels. To be
more precise, given a model M = (S, R, V) and a state s of S, the submodel of
M that is ML-generated by s is the smallest submodel M? of M that contains s
and is R-closed. (That is, the submodel ML-generated by s contains just those
states of M that are accessible from s by a finite number of transitions along
R. Note that in strict partial orders, every state in the ML-generated submodel
distinct from s is accessible from s in one step.) It follows by an easy induction
that for all formulas ¢:

M,sl=¢ iff M? sk o

In the work that follows, we shall use preservation under generated submodels as
one of our criterion for judging hybrid languages. We are interested in developing
local hybrid languages, and will reject hybrid extensions which lead to a loss of
the generated submodel preservation results.

Now for a key question: does ML have the expressivity needed for temporal
reasoning? There is no absolute answer: it depends on the application. For some
applications, ML will often be too strong. For example, if one is interested in
using modal languages to characterize various types of bisimulation invariance, it
may be necessary to work with sublanguages of ML containing no propositional
symbols (wifs would be built using the constant L) or to shed some Boolean
expressivity.

But for many other applications, ML is too weak. For example, if we are
interested in natural language semantics we need to deal with sentences that
talk about the past, not just sentences that talk about the future. So for this
application it is natural to add the modal operator H defined as follows:

M,sEHp iff Vs'(sRs=> M,s' =)

That is, H means at all past states, or more mnemonically, it is always has been
the case. We then define Py to be ~H—p; clearly P means at some past state.
When ML is enriched in this way we obtain the language of Priorean Tense
Logic, or TL. Incidentally, when these backward scanning operators are added
to ML it is traditional to use the notation G for O (read G as it is always going
to be the case) and F for ¢ (read F as sometime in the future). Backward
scanning operators may be unfamiliar to some readers; they are not widely used
either in reasoning about program execution, or in the AI literature on planning.
Nonetheless, TL is a widely studied — and indeed, very beautiful — language.
It too is local: the submodel TL-generated by a state s consists of all states
reachable from s by any finite sequence of forward and backward transitions
along R, and satisfaction of TL formulas is preserved under the formation of
such submodels. For the time being, apart from occasional asides we will pretty
much ignore TL; but when we return to it in Section 5, it will provide an
important clue to the logical structure of hybridization.

2Probably the best introduction to Prior’s views is Prior (1967).

Other weaknesses of ML are more subtle. For a start, as has already been
mentioned, no formula of ML is capable of distinguishing irreflexive from reflex-
ive states in all models; this means that one of our fundamental constraints on
temporal precedence simply isn’t reflected in this language. Moreover, consider
the definition of the Until operator:

M, s = Until(p,y) iff Is'(sRs' & M,s' = ¢ & Vt(sRt & tRs' = M,t =)

This is an extremely natural local operator (note that formulas built using
Until are preserved under the formation of ML-generated submodels) and it
has proved a valuable tool for temporal reasoning in computer science (indeed,
computer scientists usually treat Until as the fundamental temporal modality).3

However the Until operator is not definable in ML. As the non-definability of
both Until and irreflexivity follows from the fact that ML formulas are preserved
under bisimulations, and as we will later make use of special bisimulations called
quasi-injective bisimulations, it will be useful to prove these non-definability
results here.

A bisimulation between two models My = (S1, R1, V1) and My = (Sa, Ra, Va)
is a non-empty binary relation Z between S; and Sy such that:

1. For all states s; in S; and sg in Ss, if s1Zs2 then s; and so satisfy the
same propositional symbols.

2. For all states sq, s1’ in S1 and s in Ss, if s1R1s1’ and s;Zso then there
is a state so’ in S such that soRsss’ and s1'Zss’.

3. For all states sa, s2’ in S5, and s; in Sy, if s5R282’ and s; Zss then there
is a state s;’ in S; such that siR;s1’ and s1'Zss’.

The fundamental result concerning bisimulations (which follows straightfor-
wardly by induction on the structure of ML formulas) is that if Z is a bisimula-
tion between models M; and My and s; Zs» then s; and s satisfy exactly the
same ML formulas.

It follows that neither Until nor irreflexivity is definable — indeed the follow-
ing counterexample (which we believe is due to Johan van Benthem) establishes
both points simultaneously. Let M; be an irreflexive model containing just two
states s; and sz, let sy Rs2 and s2Rs;, and suppose all propositional symbols
are true at both states. Let My be an reflexive model containing just one state
s, and suppose all propositional symbols are true at s. Clearly the relation Z
which links both s1 and s2 to s and vice-versa is a bisimulation, hence all states
in both models satisfy exactly the same ML formulas. So, as M; is irreflex-
ive and M reflexive, it follows that no ML formula succeeds in distinguishing
irreflexive and reflexive states. Moreover, observe that Until(T, L) is false in
M;i (at both s; and s3) but true in Ms. Tt follows that the Until operator
cannot be expressed in ML. Incidentally, neither irreflexivity nor the Until op-
erator are definable in TL either. The appropriate notion of bisimulation for

3The Until operator has a backward looking counterpart, namely the Since operator defined
by

M, s |= Since(p,v) iff 3Is'(s’Rs & M,s’ = ¢ & Vi(s'Rt & tRs = M,t =)

Satisfaction of Since formulas is preserved under TL-generated submodels. Like the backward
looking Priorean operators, the Since operator is not as widely used as its forward-looking
sibling.

the TL is simply that given above together with two backward-looking analogs
of items 2 and 3, and it is easy to see that the counterexample just given work
with TL-bisimulations as well.

Thus, ML (and indeed, TL) has expressive weaknesses that are relevant to
temporal reasoning, and one of the key goals of this paper will be to repair them
by hybridization. But what should a hybrid temporal language look like? It is
time to draw up a wish-list.

First, we would like our hybrid language to be local. Second, we would like
our hybrid language to be expressive enough to detect irreflexivity and define
Until. Third, we are interested in finding hybrid languages in which the central
ideas of modal and classical proof systems can be clearly combined. Indeed, we
would like to exhibit a certain ‘synergy’ between modal and classical ideas; we
want the whole, so to speak, to offer more than the sum of its parts. Let’s now
examine the two hybrid binders that have previously been studied and see how
they measure up against these demands.

3 Two hybrid binders

Syntactically, hybridizing ML (or indeed, TL) involves making two changes.
First, we sort the atomic symbols; instead of having just one kind of atom
(namely the symbols in PROP) we add a second kind which we call state sym-
bols. For reasons we shall soon explain, it is convenient to divide state symbols
into two subcategories: state variables and nominals. Second, we add binders.
The binders will be used to bind state variables (but not nominals or proposi-
tional symbols). In this section we introduce the V and | binders (which as far as
we are aware are the only hybrid binders that have previously been discussed).
In the following section we will introduce a new binder: {}*.

Let PROP be as described before. Assume we have denumerably infinite
set SVAR of state variables (whose elements we typically write as u, v, w, z, y
and z), and a denumerably infinite set NOM of nominals (whose elements we
typically write as ¢, j, k¥ and [). We assume that PROP, SVAR and NOM are
pairwise disjoint. We call SVAR U NOM the set of state symbols, and PROP U
SVAR U NOM the set of atoms. Choose B to be one of V or |. We build the
well-formed formulas of the hybrid language (over PROP, SVAR, NOM, and B)
as follows:

WFF ¢ := a|-¢ |9 Ay | Op | Bay.

Here a € ATOM, and z € SVAR. If B was chosen to be V, we obtain the
language ML +V, and if B was | we get ML + |. (Strictly speaking, different
choices of PROP, SVAR and NOM give rise to different hybrid languages, but
we ignore this whenever possible.)

A full discussion of the syntax of these languages would need to define such
concepts as ‘free’, ‘bound’, ‘substitutable for’, and so on. However, as experience
with classical logic is a reliable guide, and as the relevant definitions may be
found in Blackburn and Tzakova (1998), we’ll simply remark that a sentence is
a formula containing no free variables or nominals, and that we use the notation
©[s/v] to denote the formula obtained by substituting the state symbol s for all
free occurrences of the state variable v in ¢.

As promised in the introduction, our hybrid languages use formulas as terms:
in the semantics presented below, both state variables and nominals will be

satisfied at exactly one state in any model. Now, the role of the state variables
should be clear; but what is the point of having nominals? Simply this: it is
convenient to have a supply of ‘labels’ that cannot be bound by the binders;
this simplifies some of the technicalities, for it saves us having to worry about
accidental binding. In short, nominals are reminiscent of the ‘parameters’ used
in classical proof theory.

Now for the semantics. The key idea is straightforward: we are going to
insist that state symbols are interpreted by singleton subsets of models. We’ll
also need a smooth way to handle the fact that state variables may become
bound, whereas this is not possible for nominals or propositional symbols. But
there is an obvious way to do this: we’ll let the state variables be handled by a
separate assignment function in the manner familiar from classical logic.

Definition 1 (Standard models and assignments) Let £ be a hybrid lan-
guage over PROP, SVAR and NOM. A model M for L is a triple (S, R, V) such
that S is a non-empty set, R a binary relation on S, and V : PROPUNOM —
Pow(S). A model is called standard iff for all nominals i € NOM, V(i) is a
singleton subset of S.

An assignment for L on M is a mapping g : SVAR — Pow(S). An assign-
ment is called standard iff for all state variables x € SVAR, g(x) is a singleton
subset of S. The notation g' ~ g (¢' is an x-variant of g) means that ¢ and g
are standard assignments (on some model M) such that g' agrees with g on all
arguments save possibly x.

Let M = (S,R,V) be a standard model, and ¢ a standard assignment. For
any atom a, let [V,g](a) = g(a) if a is a state variable, and V(a) otherwise.
Then interpretation of our hybrid languages is carried out using the following
definition:

M,g,sEa if se[V,g](a), where a € ATOM

M,g,s = —p ff M,g,slFe

M,g,sEpny it M,gsEp& M,g,sE=17

M, g,s |=0¢p ifft Vs'(sRs' = M,g,s' E ¢).

M,g,s =Vep iff Vg'(g'~g = Mg, skE=y)

M,g,s=lep iff M,g',s =, where g’ g and ¢'(z) = {s}

Let M be a standard model. We say that ¢ is valid on M iff for all standard
assignments g on M, and all states s in M, M,g,s = ¢, and if this is the
case we write M = ¢. For either of these languages (and indeed, for any of
the languages we shall consider later) we call the set of formulas valid on all
standard strictly partially ordered models the minimal temporal logic, and the
set of formulas valid on all models the minimal logic. We say that a formula ¢
is valid on a frame (S, R) (written (S, R) |=) iff for all standard valuations V'
and standard assignments g on (S, R), and all s € S, (S,R,V),g,s E ¢. Frame
validity will be important in Section 6 when we examine extended completeness
results for hybrid languages.

Lemma 2 (Substitution lemma) Let M be a standard model, let g be an
assignment on M, and let ¢ be a formula of any of the hybrid languages defined
above. Then, for every state s in M, if y is a variable that is substitutable for
x n @ and i is a nominal then:

1. M,g,s E ¢ly/z] iff M.g',s E ¢, where g' % g and g'(z) = g(y).
2. M,g,s = gli/z] iff M.g's | @, where g' % g and g'(z) =V (0).
Proof. By induction on the complexity of ¢.

This concludes the preliminaries; it’s time to take a closer look at the binders.

The V binder

The V binder is the stronger, more classical, of our binders: indeed it’s just the
familiar universal quantifier in a modal setting. Note that it we define Jxp to
be the dual binder —Vx—p, then:

M,g,s | Jzpiff 3g'(g' ~ g & M,g',s = o).

ML + V is a powerful language. We saw in the introduction that it can
distinguish irreflexive from reflexive states. Moreover it can define the Until
operator:

Until(p,) = Fy(O(y A) AO(Cy — ¢)).

This definition says: it is possible to bind the variable y to a successor state
in such a way that (1) ¢ holds at the state labeled y, and (2) % holds at all
successors of the current state that precede this y-labeled state.

In addition, the minimal temporal logic of ML + V has a simple axioma-
tization that can be proved complete reasonably straightforwardly. We won’t
present the full axiomatization here (for that, see Blackburn and Tzakova (1998)),
but for comparison with our later work on ML + | + | it will be useful to note
two of its components.

First, ML + V validates two of the schemas standardly used to axiomatize
first-order logic (v and s are used as metavariables over state variables and state
symbols respectively):

Q1 W(p =) = (¢ = Vvy)

Q2 Vvp = ¢[s/V]

(In Q1, ¢ cannot contain free occurrences of v; and in @2, s must be substi-
tutable for v in ¢.) As ML +V also validates the classical rule of generalization
(if o is provable then so is V) it is clear that it has a full classical core; this
makes much of the completeness proof straightforward.

Second, ML + V also validates the Barcan schema:

Barcan YvOp — OVvep

Now, the Barcan schema is familiar from first-order modal logic (that is, the
study of languages containing quantifiers that range over the individuals in some
underlying collection of first-order models). In first-order modal logic, Barcan
is a convenient (if rather dubious) principle. Its status is ML + V, however, is
beyond dispute: all instances are valid in all standard models as the reader can
eagsily check.

Barcan is important because it builds a robust bridge between the modal-
ities and the binders. As it allows us to permute the relative scopes of O and
Y, it is straightforward to combine the key techniques of modal and classical
completeness proofs. From an axiomatic perspective, the validity of Barcan is
what most sharply distinguishes ML + V from ML + |.

Allin all, ML+V is a lovely language. There’s just one problem: it isn’t local.
To see that satisfaction need not be preserved under the formation of generated
submodels, consider the following counterexample (taken from Blackburn and
Seligman (1995)). Let M be the following two-element model where S = {s, t},
and R = {(s,s)}:

-

Then Jz—<g is true at s in M, for we can assign the state ¢ to z and (s,t) € R.
However it is not true at s in the submodel M?® generated by s, for as M?®
contains only the state s, all assignments assign s to z. As s is reflexive, =Ox
will always be false. In short, 3 detects the point ¢, even though s is completely
disconnected from it.

If you want a strong hybrid language and are not interested in maintaining
locality, then ML + V is probably an excellent choice. Indeed, you may wish to
consider working with a hybrid language even less local, namely ML + V en-
riched with the universal modality A.* The universal modality has the following
satisfaction definition: M, s = Ag iff M, s’ = ¢ for all states s’ € M. It is not
hard to see that adding the universal modality yields a hybrid language with
first-order expressive power (Prior knew this result, and formulated it in a num-
ber of ways). Moreover, the A and V work together extremely smoothly, making
elegant axiomatizations possible. But while such rich systems are interesting,
they are far removed from the local temporal languages we wish to develop.

The | binder

If one is interested in local hybrid languages, the | binder is the most natural
starting point. Quite simply, | binds a variable to the current state; it creates
a label for the here-and-now. Let’s look at it more closely.?

First, note that | is self-dual; that is, at any state, in any standard model,
under any standard assignment, |z is satisfied if and only if -]z is satisfied

4Virtually the entire literature on hybrid languages is devoted to such systems. For exam-
ple, both Bull (1970) and Passy and Tinchev (1991) make use of both V and A.

5Incidentally, while | is a relative newcomer to hybrid languages (Goranko (1994) seems to
be the first published account) essentially the same binder has been introduced to a number
of different non-hybrid languages for a wide variety of purposes; see for example Richards et
al (1989), Cresswell (1990), and Sellink (1994). Labeling the here-and-now seems to be an
important operation.

10

too. To put it another way, we are free to regard | as either a “universal
quantifier over the current state” or as an “existential quantifier over the current
state”; as there is exactly one current state, these amount to the same thing.

Next, note that |z is definable in ML +V; we can define it either as Va(z —
o) or dx(z A), thus ML + | is a fragment of ML + V. It’s quite an interesting
fragment. For a start, sentences of ML + | are preserved under the formation of
ML-generated submodels. (We leave the simple proof to the reader. Essentially
it boils down to the observation that the only states that | can bind to variables
in the course of evaluation must be states in the generated submodel. For
example, in the previous diagram, if we evaluate a sentence at s, the only state
that we can bind to any variable is s itself; ML+] cannot detect ¢, which is
what we want.) Moreover, adding the | binder boosts the expressive power of
ML in temporally interesting ways. In particular, note that the sentence

JeO-2

is true in a model at a state s iff s is irreflexive.

Unfortunately, ML+ has two drawbacks. First, for many purposes it simply
isn’t expressive enough. Second, the only known way of obtaining completeness
results for this language relies on the use of a rather complex rule of proof. Let
us examine both issues more closely.

Although adding | increases the expressive power, Until still isn’t definable.
To see why, we will have to make use quasi-injective bisimulations, as intro-
duced in Blackburn and Seligman (1997). Let us say that states s and s’ in
a model M = (S,R,V) are mutually inaccessible iff s is not in the submodel
ML-generated by s’ and s’ is not in the submodel ML-generated by s. We then
define:

Definition 3 (Quasi-injective bisimulations) Let Z be a bisimulation be-
tween My and Ms; Z is a quasi-injective bisimulation iff:

1. For all states sy, si' in My, and sy in My, if s17Zsy and s,'Zsy, and
s1 # 81’ then s1 and s1' are mutually inaccessible, and

2. For all states s, s3' in Mo, and s1 in My, if s1Zs2 and s1Zs5', and
S2 # 8o’ then sy and so' are mutually inaccessible.

Now, ML + | sentences need not be preserved under arbitrary bisimulations
(the fact that JzO-x picks out irreflexive states shows this), but Blackburn
and Seligman show that they are preserved under quasi-injective bisimulations.
That is:

Proposition 1 Let Z be a quasi-injective bisimulation between models My and
Ma, and let s1 and s2 be states in My and M- respectively such that s17Zss.
Then for all sentences of ML + |, My, s1l=@ iff Ma, s2l=¢.

We can use this result to show that no sentence of ML + | defines the Until
operator. To be more specific, let p and g be propositional symbols. Then, even
over strictly partially ordered models, there is no sentence pU®%) of ML + |
that is satisfied in a model M at a state s iff Until(p, ¢) is satisfied in M at s.
To see this consider the following two models:

11

~Until(p, q) Until(p, q)

(In both models, the relation we are interested in is the transitive closure of
the relation indicated by the arrows, thus both models are strict partial orders.)
Note that Until(p, q) is false in the left-hand model at the root node, and true
in the right-hand model at the root. Hence if some sentence ¢V ®9) of ML + |
expressed Until(p, q), it would be false at the root of the left-hand model, and
true at the root of the right-hand side one. But this is impossible, for the obvious
‘unraveling’ relation between the two models is a quasi-injective bisimulation.
Hence Until(p, q) is not expressible.

Incidentally, the previous counterexample does not apply to TL+]. Al-
though the relation between the two models is a TL-bisimulation, the two top-
most point in the right-hand model clearly do belong to the same TL-generated
submodel: we can move backwards from either to the root, and then forward to
the other. This is no accident: as we shall see in Section 5, TL+] s capable of
defining Until (and Since).

There is a further difficulty with ML+ |: even over strictly partially ordered
models, there is no obvious way to provide a complete axiomatization without
resorting to a fairly complex rule of proof. For a start, JxOp — Olxzy, the
Barcan analog in ML + | is unsound over strict partial orders. (For example,
consider JzO-x — O}xz—x; in any strictly partially ordered model, this is false
at any state that has a successor.) Moreover, at present no alternative axioms
are known which build a suitable bridge between the modalities and the | binder.
Now, as is shown in Blackburn and Tzakova (1997), there is a way round the
problem: by making use of the COV rule (see Gargov, Passy and Tinchev (1987),
Passy and Tinchev (1991), Gargov and Goranko (1993)) it is possible to prove
a completeness result.® Unfortunately, the COV rule is rather complex. Let’s
take a brief look at it.

Suppose we are working with ML+]. Let # be some symbol not belonging
to this language. Then we define the set of O-forms as follows: (1) # is a
O-form, (2) if L is a O-form and ¢ is an ML+|-formula then ¢ — L and OL
are O-forms, and (3) nothing else is a O-form. Note that every O-form L has
exactly one occurrence of the symbol #. We use L(3) to denote the formula
obtained from L by replacing the unique occurrence of # by a formula ¢. We
can now define the COV rule. For every O-form L, and every state symbol s

6The earliest work on axiomatic systems for | seems to be that of Goranko (1994) and
Goranko (1996a). However Goranko’s investigations have little bearing on the concerns of the
present paper, for Goranko investigates a language containing both the universal modality
and |. Note that the V binder is definable in this language by Vzg := |yAlzA(y — ¢), thus
Goranko’s language has full first-order expressive power.

12

not occurring in L, we have:
If + L(—s) then F L(Ll)

Roughly speaking, this rule is useful because it permits us keep track of which
nominals we have substituted where (for full details, see Blackburn and Tza-
kova (1998)). Unfortunately it does so in a rather brute-force way: paths
through the model are encoded using explicit nestings of modalities; we would
prefer a simpler approach.”

Summing up, no previously studied hybrid system meets our three wish-
list criteria. The V binder is interesting and elegant — but to adopt it is to
abandon locality. Essentially the V binder is the key to reproducing first-order
logic in a modal setting; this is an interesting project, both philosophically and
methodologically (see Prior and Fine (1977) and Passy and Tinchev (1991) for
arguments in its support), but it is not the project that interests us here.

The | binder is far more promising — binding to the current state is such an
intrinsically modal idea that it is natural to place this binder center stage. But
can we overcome its expressive weakness? And are there natural ways to avoid
dependence on COYV or other complex rules of proof? The answer to both these
questions is “Yes”. In fact, we shall explore three ways of realizing these goals:
adding |}', a universal quantifier over accessible states; changing the underlying
language from ML to TL; and finally, the smoothest solution of all: adding a
retrieval operator @ to match the action of |.

4 The |! binder

Question: given that the current state is the most modally significant state, what
states are next in importance? Answer: the states accessible from the current
state, of course! This observation prompts the definition of the {J' binder:

M,g,s = Lo iff M,g' s =, forall g’ ~ g such that sRg'(z).

That is, the ' binder is simply a universal quantifier over accessible states.
Note that if we define iicp to be the dual binder —d};—wp, then:

M,g,s = Lp if M,g' s =g, for some g’ X g such that sRg'(x).

Thus .y is an existential quantifier across accessible states. The reader should
think of §* and |' as a pair of binders that “match” the actions of O and <
respectively. Observe that both {J! and |! are definable in ML + V, for l};go is
simply Vz(Ox —) and JLy is 32(Ox A ¢). Further, observe that |}! is an
intrinsically local binder; sentences built with this operator are preserved under

"The COV rule would be more palatable if it could be shown to be admissible over some
simple axiomatic base; but we have no such result. The COV rule could be replaced by a
modal version of the Paste rule used in our discussion of TL+/ in Section 5. But although
we will show that the Paste rule is admissible in TL+], we do not know whether (the modal
version of) Paste is admissible in in ML+].

8We won't dwell on the syntactic preliminaries. Such concepts such as ‘free’, ‘bound’,
‘sentence’, and so on are defined in the expected way, and a Substitution Lemma holds just
as it does for the V and | binders (recall Lemma 2).

13

the formation of generated submodels. Moreover it is strong enough to define
Until; the required definition is simply the one given earlier for ML+YV with |*
replacing 3:

Until(p,) == 1,(O(y Ap) AD(Cy = 4)).

So what happens when we add the {! binder to ML+? As we shall see —
if we restrict our attention to transitive models — the ' and | binders work
smoothly together and it is possible to give a straightforward axiomatization
of the minimal temporal logic. The remainder of this section is devoted to
establishing this.

The axiomatization

Our axiomatization is called H[{, '] (14); the H[{,{}'] indicates the hybrid lan-
guage we are working in, the (1) that we are dealing with the logic of irreflexive
and transitive models. Our goal is to show that H[], {}'](14) consists of precisely
the ML + | + |}* formulas valid on strict partial orders.

H[}, '] (14) is an extension of K4, the modal logic of strict partial orders. Re-
call that K/ is the smallest set of formulas containing all propositional tautolo-
gies, all instances of O(¢p — 1) — (O — Ot), and all instances of Oy — OO,
that is closed under modus ponens (if ¢ and ¢ — 9 are both provable, then so
is 1) and mecessitation (if o is provable then so is Ogp).

Suppose we have fixed a (countable) language £ of ML + | + |}'. By
H[{, U] (14) we mean the smallest set of £ formulas that contains all instances
of the K4 axiom schemas, and all instances of the axiom schemas listed below,
that is closed under the following rules of proof: modus ponens, necessitation,
and state variable localization for both | and |* (that is, if ¢ is provable then
so are Jxy and Uicp, for all state variables). We assume the usual notion of
formal proof. For the remainder of this section I ¢ means that ¢ is provable in
HL, V(I

Our axiom schemas fall naturally into four groups. The first group reflects
the basic quantificational powers of | and {}'.

Q1 W =)= (e = vy) (e =9) = (9=)
Q2 vp = (s = ¢[s/v]) U},(p — (Os = @[s/V])
Q3 WV —=¢) = lvp Yo (0v = 9) = Jop

Self-Dual |vp < —v-p

(Here v is a metavariable over state variables, s a metavariables over state
symbols, and ¢ and 3 metavariables over arbitrary wiffs. In Q1, ¢ cannot
contain free occurrences of v; in @2, s must be substitutable for v in ¢.)

Q1 and Q2 are obvious analogs of familiar first-order axiom schemas (and
indeed, of the schemas given earlier for ML +V). The major difference is that the
present version of)2 only lets us substitute state symbols for binders when the
appropriate conditions are fulfilled: either s must be true in the current state
(for the | binder) or it must be true at a successor state (for the |}* binder).
These restrictions motivate the introduction of Q3. Q3 allows us to eliminate
conditional occurrences of state variables (usually occurrences introduced by

14

@2 that have subsequently become bound; we shall see many examples of this).
Finally, | has one property that |J* lacks: it is self-dual; the Self-Dual axiom,
which is included only for |, reflects this. Summing up: both | and |}* legitimate
a restricted version of classical quantificational reasoning, and when proving
completeness we shall have to ensure that we can work our way around these
restrictions.

The second group consists of Barcan analogs:

Barcanyg Uf,Dcp — Olvep

Barcaniy U},Dcp — DU«‘I,QO

These two permutation principles play a crucial role in the completeness proof.
Note well: the soundness of Barcan;; depends on our transitivity assumption!

The third group consists of a single schema, and reflects the fact that state
variables are essentially labels which uniquely identify nodes. It’s our model
theory of labeling; in a sense, it is a modal counterpart of the first-order theory
of equality.

Nom PLIOv A @) = O =)]

The fourth group consists of a single schema reflecting the fact that we are
working with irreflexive models.

I JvO-v

In many ways, H[],{}'](I{) behaves in ways familiar from classical logic. For
example, the normality schemas for | and ||}, replacement of equivalents, and
a-conversion for the state variables, can all be straightforwardly established.

Lemma 4 (Normality) For all formulas ¢ and i we have:
Fla(e = 9) = (ap = do) F (e = 9) = (aw = 4o1).

Proof. Note that ||L(¢p = ¥) = (Ox — (¢ — %)) is an instance of Q2, as
is YL = (Ox =). Hence F (IL(p = ¥) A lip)) = (Oz = ¢). Use
localization to prefix this formula with U;, and then @I to distribute l}; over
the main implication to get - (I5(p = ¥) AlLe) = UL (Ox —). Note that
l};(Ox = P) = U;w is an instance of @3, so we can simplify the consequent
and so obtain the result. (Using Q3 to simplify the conditionals produced by
applications of Q2 is fairly common in #[{,{}}](14) proofs.) The proof for | is
analogous. -

Lemma 5 (Replacement of equivalents) IfF £ < x, and the formula ¢(§)
differs from the formula ¢(x) only in having £ at zero or more places where

@(x) has x, then = (&) + ¢(x)-

Proof. Because we have all instances of the normality schemas for O, |, and !,
the results follows in the standard way.

Lemma 6 (a-conversion) If y is substitutable for = in ¢ and ¢ has no free
occurrences of y, then b lxp & lyply/z] and F Ly & Ugllw[y/x].

15

Proof. Straightforward. Use Q1, @2, @3 and the localization rules.

Moreover, just as we can “generalize on parameters” in first-order logic, we
can “localize on nominals” in our hybrid language. For any formula ¢, any
nominal ¢, and any variable z that does not occur in ¢, let ¢[z/i] denote the
result of replacing all occurrences of ¢ in ¢ by z. Then we have:

Lemma 7 (Localization on nominals) IfF ¢, then there is a state variable
y that does not occur in ¢ such that - lyply/i] and U;Lp[y/z] Moreover, for
any variable x, we can choose y to be distinct from x.

Proof. If i does not occur in ¢, ¢[y/] is identical to ¢, hence as ¢ is provable,
so are Jyp[y/i] and Ulllcp[y/ i] for any choice of y. So suppose i does occur in .
By assumption we have a proof of ¢. Choose any variable y that does not occur
in this proof, and replace every occurrence of ¢ in the proof by y. It follows by
induction on the length of proofs that this new sequence is a proof of ¢[y/i] (all
that needs to be observed is that there are no axioms or rules that let us do
something to a nominal that we cannot do to state variable). Using localization
to prefix Jy and Uglj to the last item in this proof yields proofs of |yp[y/z] and
l}lllcp[y/ x] respectively. Moreover, given any variable x, we can always choose y
to be distinct from z, for there are infinitely many variables not occurring in a
given proof.

So far, so good — but we really do need to be careful! The {}' operator
has a distinctly modal flavor, and assuming ‘obvious’ classical principles can
be dangerous. A simple example concerns vacuous occurrences of binders. In
classical logic, we can simply add or discard vacuous quantifiers. What about
our hybrid language? For the most part, the expected vacuity principles hold:

Lemma 8 (Vacuity principles) Let ¢ be any formula containing no free oc-
currences of x. Then: - ¢ — lxp, F o — U;go and F lzy = ¢.

Proof. The fact that F ¢ — ¢ immediately yields (via localization and Q1) both
Feo—lxpand ¢ — Uiap. Using Self-Dual, we then obtain F Jzp — . -

But what about l};c,o — ¢? In fact, this is not provable, and we don’t
want it be, for it is not valid! To see this, consider ||} 1 — 1. In any model,
the antecedent will be true in any state that has no R-successors — but the
consequent, of course, is false. It may be helpful to consider the contraposed
and dualised form of this formula: T — |LT. The consequent demands the
existence of an R-successor (in effect, the |! operator contains a ‘hidden <)
but the trivially true antecedent obviously doesn’t guarantee that a successor
exists.

A more significant example, which will affect our later work, is the following;:
when ¢ contains no free occurrences of z, then we have that - (¢ — Jxy) —
lz(p — ¥), but we certainly do not have F (¢ — |L9) = (¢ = %) (consider
what happens when ¢ and ¢ are L and T respectively).

With the help of the Substitution Lemma it is routine to show that H[|, Ul] (14)
is sound with respect to the class of all strictly partially ordered models, so let’s
turn to the question of its completeness.

16

Completeness

First some preliminaries. A set of formulas X is consistent iff for all formulas o,
if o is a conjunction of (finitely many) formulas from ¥, then I/ ¢ —_L; otherwise
¥ is inconsistent. A set of L-formulas ¥ is a mazimal consistent set in L (an
L-MCS) iff it is consistent, and any set of L-formulas that properly extends it
is inconsistent. As H[{,{}'](I{) is an extension of classical propositional logic,
Lindenbauwm’s Lemma holds: any consistent set of £-formulas can be extended
to an £L-MCS.

We want to prove the following completeness theorem: any consistent set
of formulas can be satisfied in a strictly partially ordered standard model with
respect to a standard assignment function. So, given such a set, how do we build
a model? The natural approach, of course, is to blend the modal technique of
canonical models, with the first-order technique of Henkin proofs via witnessed
sets, and this is what we shall do.

Definition 9 (Canonical Models) For a countable language L, the canonical
model M€ is (5S¢, R°,V°), where S¢ is the set of all L-MCSs; R° is the binary
relation on S¢ defined by TRCA iff Op € T implies ¢ € A, for all L-formulas
@; and V¢ is the valuation defined by V¢(a) = {I' € S° | a € T'}, where a is a
proposition symbol or nominal.

Definition 10 (Witnessed sets) An MCS T is called |-witnessed iff for all
formulas lzp € T, there is some nominal i such that (p[i/x] Ai) € T. It is
called |*-witnessed iff for all formulas ¢ig0 € T there is a nominal i such that
(¢li/x] A Oi) € T. It is called witnessed iff it is both |- and |'-witnessed.

Lemma 11 (Extended Lindenbaum’s Lemma) Let £ and L1 be countable
languages such that L is L enriched with a countably infinite set of new nom-

inals. Then every consistent set of L-formulas can be extended to a witnessed
LT-MCS.

Proof. Enumerate the nominals that are in £1 but not in £. Let ® be a consis-
tent set of £ formulas. We now inductively extend ® to a witnessed £1-MCS.
Let ©° = &. Note that this set contains no nominals from the enumeration.
Define O™*! as follows. If @™ U {¢,} is inconsistent, then @1 = @™. Other-
wise:

1. 0"t = 0" U {p,}, if ¢, is not of the form a1 or |Le.
2. @l = @ry {on} U{Y[i/z] A}, if @ is of the form |xi).
3. O™ = 0" U {p,} U {vfi/x] A Oi}, if ¢, is of the form ,Li’(ﬁ.

(In clauses 2 and 3, i is the first nominal in the enumeration that has not been
used in the definitions of @™, for all m < n, and that is not in ¢,,.)

Let © =J,,>0 ©™. Clearly this set is maximal and witnessed. To show that
© is consistent, we need to prove that for all n, ©" is consistent. Case 1 is
trivial; what about cases 2 and 37

For case 3 we argue by contrapositive. Suppose that for ¢, = |14, ©"U{p,}
is consistent while @"*! = @™ U {¢, } U {¢[i/z] A Oi} is not. Then there is a
formula x, which is a conjunction of a finite number of formulae in ©™ U {p,},

17

such that F x — =(y[i/2] AOi). We're going to localize on i. By Lemma 7 there
is a state variable y distinct from z that does not occur in x — = (¢[i/z] A O)
such that:

F 4y (x = ~(@li/z] A O0))ly/i]-

That is, we have that + U;(X[y/z] — =(Yi/z][y /i A Cily/i])). But i is a new
nominal: it does not occur in x, hence x[y/4] is just x; and it does not occur in
¥, hence Y[i/z][y/i] is ¥[y/x]. Thus the previous expression simplifies to:

F b, (x = ~(¥ly /2] A Oy)).

Hence by Q1 we get -y — llglj—'(w[y /z]AOy). By replacement of equivalents this
is just F y — U;(Oy — ply/z]), so we can use @3 to simplify the consequent,
thus obtaining F xy — l};—wp[y/x]. Now use a-conversion on U;—'w[y/:c] to
replace y by x (this is possible by Lemma 6), thus we have F x — U}c—'w, and
hence ©" U {p,} F L. As ¢, = -}~ this contradicts the consistency of
0" U {pn}

Note that this argument is essentially classical: it exploits the quantifica-
tional powers of ' in a manner reminiscent of Henkin proofs. Case 2 is proved
analogously. We conclude that © is consistent. -

Definition 12 (Witnessed models) Let ¥ be a witnessed MCS in some count-
able language L, let M® = (5S¢, R°,V°) be the canonical model in L, let S*

be those states in S¢ that belong to the submodel ML-generated by X, and let

Wit(S€) be the set of all witnessed MCSs in S¢. Then the witnessed model M™

yielded by X is the triple (S, R¥, V™), where S¥ = S*NWit(S¢), and R® and

V¥ are the restrictions of R¢ and V¢ respectively to S™.

Lemma 13 Let M™ be the witnessed model yielded by a witnessed MCS X.
Then (1) RY is transitive, (2) every MCS in S™ contains at least one nominal,

(8) R™ is irreflexive, and (4) no state symbol occurs in more than one MCS in
Sw.

Proof. For (1), note it is a standard result that R€ is transitive (because all
MCSs contain all instances of Ogp — OOy, the transitivity axiom), hence as R¥
is a subrelation of R€ it is transitive too.

For (2), note that - |xz (this follows easily from the fact that F z — x) so
every MCS in S¥ contains Jzz. But as all MCSs in S* are witnessed MCSs,
they are |-witnessed, hence every MCS contains a witness for this formula. Such
a witness is simply a nominal.

For (3), we have just observed that any MCS T contains some nominal, say
i. But I also contains the axiom JzO-z. Hence, by @2, T' contains O as
well. Thus T is not R¢-related to itself (that is, R¢ is irreflexive), and as R is
a subrelation of R¢, RY is irreflexive too.

For (4), suppose first that there are two distinct successors of ¥ in M, say T
and A, that both contain the same state symbol s. Since I' and A are distinct,
there is a formula ¢ that distinguishes them; that is, a formula § such that
(sAd) €T and (s A —d) € A. Tt follows (using the fact that R¥ is a restriction
of R°) that O(sAd) € ¥ and O(sA—J) € E. Let z be any variable that does not
occur in § and is distinct from s; then |} (O(2 A 6) — O(z — §)) is an instance
of the Nom axiom. As ¢s € ¥, it follows by Q2 that F O(s A d) — O(s — 9).

18

Thus, as O(sAd) € X, O(s —) € . But then, as O(sA=d) € X, O(sA-0AS) €
3, which is impossible. We conclude that no two distinct R™-successors of ¥
contain the same state symbol.

So next assume that some state symbol s is in both ¥ and a successor ' of
3. As s € &, using the irreflexivity axiom and @2 we have that O-s € ¥. On
the other hand, as s belongs to a successor of X, we also have that Cs € X; as
Y is consistent, this is impossible. Thus no state symbol occurs in both ¥ and

a successor of X, and we have shown that no state symbol occurs in more than
one MCS in S*. A

Note, however, that there is no guarantee that every state symbol occurs
in at least one witnessed MCS in a witnessed model. For example, the set
{—i,0-i} is consistent and thus can be extended to a witnessed MCS. But any
witnessed MCS extending {—i,0-i} yields a witnessed model in which i does
not occur in any MCS, and in such models the natural valuation V¥ is not a
standard valuation as V¥ (i) = {}. As we need to build a standard model (and
a standard assignment) we need to ensure that all state symbols denote some
state, so we shall glue a new root node * onto our witnessed models. This new
node will serve as a denotation for any symbol not contained in MCSs. More
precisely:

Definition 14 (Completed models and assignments) Given a witnessed MCS
5, let M¥ = (S¥, R, V%) be the witnessed model yielded by X. The completion
of MY is a triple MT = (S, R, V™), where St = S¥ U {*} (where x is an
entity that is not an MCS); Rt = R* U{(x,T) | T € S*}; for all propositional
variables p, V*(p) = V¥(p); and for all nominals i, V(i) ={T e M¥ | i € T}
if this set is non-empty, and V(i) = {x} otherwise.

If M+ = (ST, R, V1) is a completion of a witnessed model M™, then
the completed assignment g* on M™T is defined as follows: for all variables x,
gt(z) ={T € MY | z € '} if this set is non-empty, and g(x) = {x} otherwise.

Clearly (with the help of Lemma 13) completions of witnessed models are
standard models, completed assignments are standard assignments, and R*
is a strict partial ordering. Thus all theorems of the logic H[|,'](I4) are
true in completed models with respect to the relevant complete assignment.
Completions of witnessed models are well-behaved structures, and we shall use
them to prove our Truth Lemma.

But we are not yet ready to do this. First we have to establish a crucial fact:
that (completions of) witnessed models contain all the information required to
cope with the modalities. That is, we need an Existence Lemma which tells
us that if O belongs to a witnessed MCS A, then A has a R"-successor T’
containing ¢. This is not obvious. The ordinary Existence Lemma for modal
logic tells us that A has a R¢-successor I' that contains ¢ — but it does not
guaranteed that I is a witnessed MCS, and hence we have no idea whether or not
I'isan R™-successor of A. To put it another way, we formed the witnessed model
by throwing away the non-witnessed MCSs present in the canonical model. How
do we know that we didn’t throw away all the ¢-containing R°-successors of A?

The obvious approach to this problem is to tackle it head on by inductively
constructing the required witnessed successors; this is the approach taken in
Blackburn and Tzakova (1998) for ML + V. However there is no obvious way to

19

adapt this argument to ML + | + |} because of the following technical problem:
as we have already observed, (¢ — |l¢) = [L(¢ —) is not a theorem of
H[L, I1](I4)i for it is not sound. However (¢ — 3z¢)) — Jx(p —), the corre-
sponding principle in ML +V, is sound and in fact plays an (easily overlooked,
but important) role in the completeness proof for ML + V. We might sum up
the situation as follows: although ML+ | + U is rich enough to support Barcan
analogs, the restrictions on its classical component seem to make the obvious
route to completeness difficult.’

But there is an elegant solution — and a modally flavored one at that. Let
us call an MCS named iff it contains at least one nominal, and call a nominal in
an MCS a name for that MCS. We are going to ask one simple, but important,
question: could we have thrown eway any named MCS? As we shall show, the
answer is ‘no”: that is, all named successors of witnessed MCSs are witnessed.
Why is this useful? Because it means that we are free to think in terms of named
MCSs, rather than just in terms of witnessing — and, as will become clear,
because we have the Nom schema at our disposal, named MCSs are very easy
to work with. In particular, this approach leads to a relatively straightforward
proof of the required Existence Lemma.

We shall need the following syntactical preliminary:

Lemma 15 For any formulas ¢ and ¢ such that ¢ contains no free occurrences
of x we have that F (o A LLy) = L (@ A).

Proof. Because of our restriction on ¢, {L(p = —¢) = (¢ = JL—¢) is an
instance of Q1, hence F |JL(p = <) = (¢ V |JL—)). Now, by replacement
of equivalents we have F {1 (- V =) + (¢ — =), hence it follows that
FUi(-o V=) = (mp Vv IJL—). Taking the contrapositive yields - =(=¢p V
UE—) = =L (= vV) and the required result follows. -

Now for the key observation — and the place where we cash in our transi-
tivity assumption.

Lemma 16 Let X be a witnessed MCS and M* the submodel of the canonical
model it generates. Suppose that T is a named MCS in M* that is distinct from
3. Then T is witnessed, and hence Y R™T.

Proof. Suppose I # ¥ and that I' is named by i. Note that ZR°T, as M* is
transitive. We need to show that T is both |- and |!-witnessed. Now, it is easy
to see that T is J-witnessed. For suppose that |zy € T'. By Q2 we have that
lzp — (i — ¢[i/z]) € T, hence ¢[i/z] € T and T is |-witnessed.

So suppose ¢}E<p € I'. We have to show that there is a nominal k£ such that
plk/z] A Ok € T. Now, from the definition of the canonical relation, we have
O3 N J,icp) € Y. So, suppose that the following formula was provable:

Named- Witness O(i Adrp) = IO (i A plu/z] A Ou),

for some variable u not in ¢}C<p. Then the required result would follow easily, for
we would have that | (i A [u/z] A Ou) € , and hence, as ¥ is |'-witnessed,

9Recent work suggests that it may be worth re-examining the head-on approach. Using a
technique described in Gabbay (1976) (see Gabbay’s Lemmas 7.3 and 7.4, pages 40-41) for
first-order modal logic, Blackburn and Tzakova (1998a) give a completeness proof for multi-
modal logic enriched with V that does not appeal to the provability of (¢ — Jz¢p) — Jz(p —
¥). It would be interesting to try adapting this alternative proof to ML+ |+,

20

that (i Ag[k/u] AOk) € E, for some nominal k. Using Nom we could conclude
that O@ — (¢[k/u] A Ok)) € X, and it would follow that ¢[k/u] A Ok € T since
i names T'. Thus T’ would be |'-witnessed as required.

And, indeed, Named-Witness is provable. Using Q3 and a-conversion we
have F [ro = |L(p[u/z] A Ou), where u is a variable not occurring in L.
Hence by propositional calculus and easy modal reasoning F (i A ¢i<,0) —
O(i AL (u/z] A Ou)). Hence, by the previous lemma we have - (i A hp) =
OLL (i A(p[u/x] AOw)), and using Barcany; to give |. scope over the consequent,
we get Named- Witness. -

Lemma 17 (Existence Lemma for Witnessed Models) Let ¥ be a wit-
nessed MCS, and let MY = (S¥,R¥, V™) be the witnessed model yielded by
Y. Then for any MCS A in SY, if OGp € A, then there is © € S™ such that
ARY0 and ¢ € 0.

Proof. Easy. We are simply going to use the following formula to reduce the
problem to the basic modal Existence Lemma:

Paste Op = LOo(x A),

where z is a variable not occurring in . To see that Paste is provable, note that
F ¢ — (x — (z A p). By localization and normality we get F Jzp — lz(z —
(z A ¢), hence using @3 to simplify the consequent we get F Jxy — lz(z A ¢).
Lemma 8 tells us that - ¢ — Jzp, as x does not occur in ¢, hence - ¢ —
lz(z A). Basic modal reasoning yields F Cp — Olaz(x A @), and Barcano,
then yields Paste.

But now the lemma is virtually immediate. If O € A, then |LO(uAyp) € A;
hence as A is witnessed, for some nominal ¢, G4 A) € A. Now, by the basic
modal Existence Lemma, A has an R°-successor containing ¢ and ¢; call this
i-containing successor ©. Moreover, as © is a named MCS in the submodel of
the canonical model generated by X, by the previous lemma it is witnessed, and
hence AR¥®. -

Lemma 18 (Truth Lemma) Let M be the completion of a witnessed model
in some countable language L, let g be the completed M -assignment, and let A
be an L-MCS in M. For every formula ¢ we have ¢ € A iff M, g, A = ¢.

Proof. By induction on the complexity of . If ¢ is a state symbol or a proposi-
tional variable the equivalence follows from the definition of the model M and
the assignment g. The Boolean cases follow from obvious properties of MCSs.
For the modal case, the Existence Lemma gives us the information required to
prove the left to right direction. The right to left direction is more or less imme-
diate, though there is a small point the reader should observe: if M, g, A | O,
then there is a successor of A that satisfies ¥. Since no MCS precedes *, we
conclude that % cannot be this successor of A. Thus the successor to A that
satisfies 1 is itself an MCS, and so we can apply the inductive hypothesis.

So suppose ¢:10¢ € A. Since A is witnessed, there is a nominal 7 such that
Y[i/x] A i € A. By the inductive hypothesis M, g, A = ¢[i/z]. Moreover, by
the Existence Lemma, A is related to some witnessed MCS containing i, hence
M, g,A = <i. Thus, by the contrapositive of the @2 axiom, M, g, A = ¢;¢.

For the other direction assume M,g, A = |L¢. That is, M,g',A = 1,
where ¢’ ~ g such that ¢'(z) = {T'}, where T is a witnessed MCS such that

21

ARTT. By clause 2 of Lemma 13, T' contains a nominal, say i. Now, by
clause 2 of the Substitution Lemma, M, g, A |= ¢[i/z], hence by the inductive
hypothesis ¢[i/z] € A. Moreover, as ARTT, &i € A. So, by the contrapositive
of the Q2 axiom, 14 is in A as required.

The argument Jz¢ € A is similar (in fact, slightly simpler as no appeals to
the Existence Lemma are required) and is left to the reader.

Theorem 19 (Completeness) Every H[|,|}'](I{)-consistent set of formulas
in a countable language L is satisfiable in a countable, rooted, strictly partially
ordered, standard model with respect to a standard assignment function.

Proof. Suppose Y. is a consistent set of L-formulas. By the Extended Linden-
baum’s Lemma we expand it to a witnessed MCS X7 in the countable language
LT. Let M* be the completed model yielded by £*, and let g™ be the com-
pleted assignment on this model. M is a rooted strictly partially ordered
standard model, and gt is a standard assignment. It is countable since ev-
ery MCS contains a nominal, and £t is countable. By the Truth Lemma,
MT gt St E T and so Mt gt St =35, A

The completeness proof for ”H[J,,Ul](M) unearths a number of ideas that
will play a key role in subsequent work. For example, from now on we will
always think in terms of named sets rather than witnessed sets. Moreover,
the idea underlying the Paste formula is crucial, and will return in various
guises. Nonetheless, there is an obvious shortcoming: the proof hinged on the
transitivity assumption. What can we do about this?

Reflecting on the proof, we see that the combination of transitivity and
! was really a way of ensuring communication: it enabled us to establish
a link between bound variables and the nominals used to instantiate them.'®
Consider, in particular, how Lemma 16 was proved. This relied on the fact
that — because of transitivity — the generating point could see each named
MCS in the canonical model in a single step. This guaranteed (with the help of
Named-Witness) that all such sets were witnessed, and subsequent use of Paste
led to a swift proof of the Existence Lemma. The moral is clear: if we want
local hybrid languages capable of coping with the logics of arbitrary models, it
seems we must look for communication mechanisms that function effectively in
the absence of transitivity.

5 Tense logic with |

We begin our quest for improved communication by (temporarily) changing
the underlying language from ML to TL; we are going to abandon ML+|+{}*

100ne reviewer suggested that the transitivity assumption was essentially a way of smuggling
globality into the language. We don’t agree. While it’s true that {! ‘matches’ the action of
O on transitive frames in much the same way that V matches the action of of the universal
modality A, the model construction for ! is very different from that for ML-+V or ML+V + A.
Perhaps the suggestion made in Footnote 9 will enable this difference to be bridged, but even
so the fact remains that only a fragment of classical reasoning is sound for {!. Moreover,
many applications demand that we work with models containing multiple transitive flows of
time, each completely isolated from the others. (For example, such models underly many
Montague-style analyses of temporal expressions.) Typically we would not want the temporal
operators and binders to be able to access states in alternative time flows; our sense of locality
mirrors this requirement perfectly.

22

and work instead with TL+]. As we shall see, the interplay of TL’s forward
and backward looking operators is a communication mechanism of the type we
require: even without the help of a transitivity assumption, TL interacts cleanly
with |. Let’s consider some examples.

First, Until is definable in TL+/]:

Until(p,) = leFly(p A P(z AG(Fy = 1))).

Note that this works rather differently from previous hybrid definitions of Until.
This definition is active. First we use | to mark the current state with . Then
we say that there is a future state, labeled y, such that (1) ¢ holds at y, and (2)
if we look back at x from y we see that the following holds: all successors of x
that precede y satisfy ¢. In short, we use | to name two key states (the current
state and the ¢ verifying state) and by using the tense operators to shuttle
backwards and forward between them we enforce the required conditions on .
Contrast this with the way we proceeded in ML+|+{'. There we stayed put at
the current state, used |! to label the o point, and then enforced the condition
on the ¥s with the help of the modalities.

Next observe that |! is definable in TL+/ as follows: ¢1llc,o = lzFlyP(xAyp).
Note that this uses the same strategy as the definition of Until: we mark the
key points and use the tense operators to shuttle between them.'! Given the
work of the previous section, this suggests that TL+] is a promising language.
Moreover, the way these binders are defined bears some resemblance to the
L-forms that underly theCOV rule. So surely we can neatly axiomatize the
minimal logic of TL+{?12

Indeed we can. We'll do so as follows. First we’ll define an axiomatization
called H[|](K:); as this notation is meant to suggest, this will be an extension

11 This, of course, means it is possible to mimic the passive ML+]+{}! style definition of
Until in TL+]. We do this as follows: Until(p,v) = |lazFlyP(x A<O(yAe) AG(Fy — ¢))).
That is, all the shuttling to and fro is now packaged into a macro in prenex position. Note
that not only |! is definable; we can also define binders which quantify over 2-step successors,
3-step successors, and so on. In fact, we can even define binders that allow us to quantify over
successors reachable via zig-zagging paths. Here, for example, is how we define an existential
quantifier over those states reachable by making 3 forward steps followed by 1 backward one:
Vo' := |aFFFPlyFPPP(x A ¢).

12 Although we are mostly concerned with the technical ramifications of adding | to TL,
we attach deeper significance to TL+/; in our view this language is rather special. Priorean
tense logic has sometimes been criticized for trivializing the present tense — the past and
future tenses are both there, but there is a ‘gap’ where the present tense should be. In our
view | goes a great deal of the way towards formalizing a linguistically and philosophically
plausible notion of the present tense: to bind a variable to the current state is essentially to
make direct indexical reference to it — and arguably this is the cornerstone of the semantics
of the present tense. We can’t follow this up here, but for explicit arguments along these
lines that make use of | see Richards et al (1989) (these authors use the notation G for |).
Similar sentiments can be gleaned from Prior’s analysis of the word “Now” (see Prior (1968)).
Kamp’s technical development of Prior’s views (see Kamp (1971)) abandoned Prior’s nominal-
based direct reference account in favor of simulating reference in the metalanguage via a two
dimensional semantics, an approach which was subsequently adopted by Vlach (1973) and
others; Prior’s arguments (and nominals with it) passed into obscurity. There is an intriguing
story to be told here, hints of which may be found in Blackburn (1990) and (1993).

Note that if | is accepted as a reasonable formalization of the present tense, this gives
added significance to the definability of Kamp’s Until and Since operators in TL+|: these
operators, as Kamp himself proved, are not definable in terms of past and future — but
they are definable in terms of past, present and future. That is, Prior’s celebrated triple
encompasses temporal reasoning in a very strong form.

23

of the minimal Priorean tense logic K;. We'll then show that this logic admits
a rule of proof called Paste; this rule is analogous to the Paste formula used
in the previous section to prove the Existence Lemma. Using this rule and
the model construction methods introduced in the previous section it will be
straightforward to prove completeness.

Let’s get to work. H[]](K) is an extension of K;, the minimal Priorean tense
logic. Recall that K; is the smallest set of formulas containing all propositional
tautologies, all instances of G(¢ — ¢) = (G — G¥), and H(p — ¢) —
(He — H4v), and all instances of ¢ — GPy and ¢ — HFyp (the Converse
axioms), that is closed under modus ponens and necessitation for both G and H
(that is, if ¢ is provable then so are Gy and Hy). The Converse axioms play
a key role in the work that follows: as we shall see, it is these simple looking
formulas that give us “the logic of to-and-fro”.

To the axioms and rules of proof of K; we add the following. First H[|](K;) is
closed under state variable localization for |, just as H[|,'](I{) is. In addition,
H[](K¢) contains the Q1, @2, Q3 and Self-Dual axioms for |, and the following
version of Nom:

Nom T(sAy)— U(s =).

Here s is a metavariable over state symbols, T is a metavariable over se-
quences of F and P operators (including the null sequence) and U is a metavari-
able over sequences of G and H operators (including the null sequence). Consider
what this version of Nom says: if by following the sequence of transitions indi-
cated by T we reach a state labeled s and containing the information ¢, then any
sequence of transitions U that takes us to s will takes us to a p-containing state
— for of course, no matter how we get there, there is only one state labeled s.
We need to work with such sequences because we have placed no restrictions on
the accessibility relation; our modal theory of labeling must cope with arbitrary
zig-zag paths.

And that’s H[{](K;). Note that all its rules of proof and axioms (with the
exception of the new version of Nom) are familiar, and that there are no Barcan
analogs. And now for the key observation: we don’t need Barcan analogs,
because we can prove that H[}](K}) is closed under a rule of proof called Paste.

We introduce some notation. Let T be a metavariable over F' and P (note:
we mean single occurrences of these two operators, not sequences of them), and
let us write T;¢ as shorthand for T'(i A ¢). Using this notation, we can state the
Paste Rule as follows:

FT,TJTk(,O—)G

(Here k is a nominal distinct from 4, ..., j that does not occur in ¢ or 6.)
Lemma 20 (Admissibility of Paste) The Paste rule is admissible in H[|](K3).

That is, we automatically have closure under this rule in H[|](K;); we defer the
proof of this until the end of the section. For now, let’s just accept the lemma,
and see why closure under this rule is so useful. The reason is embodied in the
the following definition:

24

Definition 21 (Pasted sets) An MCS T is called pasted iff for every for-
mula of the form T;---T;T¢ € I there is a nominal k such that such that
T;-- 'Tka(p erl.

That is, a pasted set is an MCS in which whenever we can reach some
information ¢ by following a chain of transitions, then we can always reach that
same information in a named state by following the same chain. Intuitively, if we
start with a pasted set this should make it easier to prove an Existence Lemma;:
faced with a demand <, we look for a named state that fulfills that demand.
And now the significance of the Paste rule is clear: read contrapositively (that
is, read from bottom to top) it tells is that pasting a brand new nominal under
the scope of < is a consistency preserving operation — for if we can’t derive
a contradiction (that is, §) without the new nominal, then we can’t derive the
contradiction after we have pasted.

Lemma 22 (Extended Lindenbaum’s Lemma) Let £ and L be countable
languages such that L is L enriched with a countably infinite set of new nom-
inals. Then every consistent set of L-formulas can be extended to a named and

pasted LT-MCS.

Proof. Enumerate the formulas of £*; call this the formula enumeration. Enu-
merate the nominals that are in £ but not in £; call this the new-nominal
enumeration. Let ® be a consistent set of £ formulas. We shall first add a name
to ®, and then inductively extend it to a pasted £LT-MCS ©.

Let j be the first nominal in the new-nominal enumeration. Define ®; to
be ® U {j}. ®; is consistent. For suppose not. Then for some conjunction
of formulas ¢ from ® we have that - j — —J. As j is from the new-nominal
enumeration, it does not occur in §, hence we can apply localization on nominals
(see Lemma 7) to obtain F Jx(x — —d), where z is a variable that does not
occur in §. By @3, + Jz—d, hence by the Vacuity (see Lemma 8), F —§, which
contradicts the consistency of ®. Thus ®; is consistent.

We now inductively extend A; to a pasted £L1-MCS. Let ©° = A;. Define
Ont1 as follows. Let ¢, be the n-th formula in the formula enumeration. If
O™ U {¢y} is inconsistent, then ©@"+1 = @™. Otherwise:

1. O™ = 0" U {p,}, if ¢, is not of the form T; - - - T;T).

2. O = 0" U{p, }U{T; - T;Ty1)}, otherwise. Here k is the first nominal
in the new-nominal enumeration that does not occur in O™ or ¢,.

Let © = [J,,5,©". It is easy to see that this set is named, maximal, and
pasted. Moreover, O is consistent for all n (this is precisely what Paste guar-
antees) hence O itself is consistent too. A

What should we do next? One of the most valuable things we learned in
the previous completeness proof was to try thinking in terms of named sets.
That’s what we'’re going to do here, right from the start, Given a named and
pasted MCS, we’re going to inductively collect all it’s named successors, named
predecessors, named successors of named successors, named successors of named
predecessors, and so on, and use these MCSs to make the model. As we shall
show, our logic is strong enough to guarantee that all these named sets are both
pasted and |-witnessed.

25

Definition 23 (Named models) Let ¥ be a named and pasted MCS in some
countable language L and let M°® = (S¢, R°, V) be the canonical model in L.
Define S° to be {E}. For all natural numbers n > 0, define S™*1 to be

SPUA{L € S| T is named, and for some A € S, AR°T or TR°A}.

Define S to be |J,c,, Sn- Define M, the named model yielded by ¥, to be
(S,R,V) where R and V are the restrictions of S¢ and R° respectively to S.

Lemma 24 Let M be the named model yielded by a named and pasted MCS 3.
Then (1) every MCS in S is named, (2) no state symbol occurs in more than
one MCS in S, (3) every MCS in S is |-witnessed, and (4) every MCS in S is
pasted.

Proof. (1) is trivial, (2) can be proved using the (temporal version of) the Nom
schema, and (3) is an immediate consequence of @2 and the fact that every
MCS in S is named (in fact we made use of this argument in the first part of
the proof of Lemma 16).

For (4), we shall show that every named R°-successor and R°-predecessor of
a named and pasted set is itself pasted. Given our inductive definition of S, it
follows immediately that every MCS in S must be pasted. So suppose I is named
by a nominal [, and that T" is a R°-predecessor of a named and pasted set A.
Further suppose for the sake of a contradiction that I is not pasted. This means
there is some T;---T;Ty € T such that for all nominal k, =T} ---T;Tpp € T.
Now I'R°A, hence P(IANT;---T;Ty) € A. But A is pasted, hence for some
nominal k, P(IAT;---T;Tre) € A. Hence by Nom, H(l = T;---T;Trp) € A,
thus as'R°A and [€ A, we have that T - - - T; Ty € I'. From this contradiction
we deduce that T' must be pasted after all. In a similar fashion (indeed, simply
by replacing P by F' and H by G in the previous argument) we can show that
named R¢-successors of named and pasted sets are themselves pasted, which
finishes the proof. -

Lemma 25 (Existence Lemma for Named Models) Let X be a named and
pasted MCS, and let M = (S, R, V') be the named model yielded by . Then for
any MCS A in S:

1. If Fp € A, then there is a © € S such that AR® and ¢ € O.
2. If Pp € A, then there is a © € S such that © RA and ¢ € ©.

Proof. More or less immediate; we shall prove item 2. Suppose Py € A. By
the last part of the previous lemma A is pasted, hence for some nominal i,
P(i A ¢) € A. By basic modal reasoning we have that {i A p} U {0 | HI € A}
is consistent, hence it can be extended to an MCS ©. It is standard result of
tense logic that ®© R°A. As © is named by i, it belongs to S, hence O RA as
required. Item 1 can be proved similarly.

We can now finish off pretty much as we did in the previous section. First,
to guarantee that every nominal and variable denotes something we complete
the model by adding on a dummy state.

26

Definition 26 (Completed models and assignments) Let M = (S, R,V)
be the named model yielded by some named and pasted set ¥. A completion of
M is a triple Mt = (ST, RT, V), where ST = S U {x} (where x is an entity
that is not an MCS); Rt = R; for all propositional variables p, VT (p) = V(p);
and for all nominals i, V(i) = {T € M | i € T} if this set is non-empty, and
V(i) = {*} otherwise.

If Mt = (8T, RY, V1) is a completion of a named model M™, then the
completed assignment g& on M is defined as follows: for all variables x,
gt (z) = {T € M | & € T} if this set is non-empty, and g(z) = {x} other-
wise.

Note that by item 2 of Lemma 24, completed models and assignments are
standard. Also note that completed models are not connected; x is not related
to any other state other states.

Lemma 27 (Truth Lemma) Let M be the completion of a named model in
some countable language L, g the completed M -assignment, and A an L-MCS
in M. For every formula ¢ we have ¢ € A iff M,g,A |= .

Proof. Much the same as the proof of Lemma 18, though simpler. The Existence
Lemma just proved handles the inductive step modalities. The fact that all
MCSs in the model are |-witnessed (item 4 of Lemma 24) handles the step for

LA

Theorem 28 (Completeness) Every H[|](K:)-consistent set of formulas in a
countable language L is satisfiable in a countable standard model with respect to
a standard assignment function. Moreover, H[|](K;)-consistent set of sentences
in L is satisfiable in a countable connected standard model

Proof. The first part of the theorem is proved in the expected way: given a
H[}](K¢)-consistent set of formulas ¥, we use the Extended Lindenbaum Lemma
to expand it to a named and pasted set ¥t in a countable language £, and
satisfy it on the completed model M it gives rise to using the completed
assignment gt.

M isn’t connected, but let M be the submodel generated by ¥+; note that
this is just the named model. Then all sentences in ¥ are true in M. -

That’s it — though there are two loose ends that need tidying: we need to
axiomatize the minimal temporal logic, and we need to show that the Paste rule
is admissible.

We axiomatize the minimal temporal logic by adding all instances of the two
following schemas; as usual, s is a metavariable over state symbols.

FFs — I's

s — —F's

As the reader can easily check, if we build a model for a consistent set of
formulas in this enriched logic, the named model will be a strict partial order,
and completeness is proved. Fine — but why didn’t we just add the familiar 4
axiom schema that we used in the previous proof; surely that would have done

27

just as well for transitivity? Yes, that would have worked — but this way of
axiomatizing things points towards a general result we are going to prove in
the following section. Note that only state symbols were used in these schemas;
neither contains propositional variables. As we shall see in the next section,
such schemas guarantee completeness.'?

Finally, let’s show that the Paste rule is admissible. Much of the proof
hinges on the following “to-and-fro” (or “perspective shifting”) rules that hold
for the minimal tense K; and its extensions: for any formulas ¢ and 0, Fp — 0 is
provable iff ¢ — H@ is provable; and Py — 6 is provable iff ¢ — G6 is provable.
We leave the proofs to the reader; they are simple exercise in manipulating the
Converse axioms. Let 7% denote H if T is F, and G if T is P. Then we can
summarize these two rules as: T — 6 is provable iff ¢ — T%. We're now
ready to go to work. What follows is essentially an adaptation of a technique
used by Gabbay and Hodkinson (1990) to prove a completeness result for the
Until-Since logic of the real numbers. We apply their to-and-fro idea until we
isolate a bare nominal which we can “quantify away” with the the aid of |
binder. Then we to-and-fro everything back together again.

Let’s go. We need to show that if - T} -- - TTxp — 0, then - T5-- - T;Tp —
0, where k is a nominal distinct from 4, ..., j that does not occur in ¢ or 6.
Here’s how we start:

FTGAT - TiTep) — 6
AT TiThy) — T

That is, we’ve simply expanded our shorthand, applied a perspectival shifting
rule, and then used propositional logic. We repeat the argument until we obtain:

FEkAe = THj =T (1= THi— T9))--))
Propositional logic yields:
Fk—(p—=THj—TH---(I = Ti—T))--)))

Having isolated the (unique) occurrence of k in the antecedent, we start applying
what we know about | to get rid of it. First we apply localization on nominals.
Letting « be the new variable which replaces k£ we obtain:

Flo(x = (p = TG = TH--- (I = T — T%0))---))))

Well, k is gone — but it has left « in its place. But we can get rid of z as
follows. First, using normality and the fact that |zz is provable yields:

Fla(p = TG = T (1 = T = T'9)) -+)

The z in the antecedent position is gone, hence as there are no other occurrences
of this variable under the scope of |z, we can apply Vacuity to obtain:

Fo—=THj—=TH--(=T — T))---))

131ncidentally, this axiomatization is also, albeit in slightly disguised form, a complete
axiomatization of the minimal temporal logic of IQ (see Richards et al (1989)).

28

Having successfully removed all traces of k, we patiently use the perspective
shifting rules and propositional calculus to convert the formula back to its orig-
inal format; in effect we run the first few steps of the argument in reverse. This
process eventually yields

as required. We have shown that the Paste rule is admissible.

Time to sum up: what have we achieved? Well, there’s certainly a lot on the
positive side: we have shown that TL cashes out the communication metaphor,
we have learned how to handle a minimal hybrid logic in |, and we have hinted
that it is going to be easy to prove the completeness of certain kinds of axiomatic
extensions.

Nonetheless, we shouldn’t be satisfied with this result. For a start, for many
applications we’re simply not interested in backward looking operators — and
clearly such operators are crucial to the to the work of this section. Furthermore,
while the previous result is impressive testimony to the naturalness of tense
logics converse operator pairs, it has to be said that there’s something — let’s
face it, clumsy — about the way tense logic implements communication: we are
forced to pass information up and down long chains of tense operators, as the
admissibility proof for the Paste rule makes painfully clear. Communication
certainly seems to be the key to hybrid completeness: but how are we to obtain
it without assuming transitivity, without looking backwards, and, above all,
without abandoning the locality intuition that underlies our investigation?

6 The @ operator

Let’s start with a little story. Suppose we were given a brand new web-browser
to test, and we discovered it had the following limitation: although it allowed
us to bookmark URLs, it didn’t allow us to jump to these locations by clicking
on the stored bookmark. Frankly, we wouldn’t dream of working with such a
browser; we’d demand that this shortcoming be fixed right away.

ML+ is rather like this (hopefully non-existent) browser: < pushes us
through cyberspace, and | allows us to label the states we visit on our travels
— but ML+] doesn’t offer us a general mechanism for jumping to the states we
label. Let’s put this right. We shall allow ourselves to construct formulas of the
form @,p. To evaluate such a formula we will jump to the point s labels and
see whether ¢ holds there; in effect, @ will enable us to use the values | has so
carefully stored for us.

Let’s make this precise. If s is a state symbol and ¢ is a formula then @,y is
a formula. It is possible to think of @ as a binary modality whose first argument
is a state symbol and whose second argument is a formula — but as will soon
become clear, it is more natural to view the composite symbol @, as a unary
modal operator. If we add all these state-symbol-indexed unary modalities to
ML+], we obtain ML+/+@. Most syntactic aspects of ML+]+@ are obvious,
though the following point is worth stressing: @ does not bind variables. Only
the | binder does that.

Now for the semantics. Let M = (S, R,V) be a standard model, let g be a
standard assignment on M, and let Den(s) be the denotation of the state symbol

29

s (that is, Den(s) is g(s) if s is a state variable, and V(s) if s is a nominal).
Then:
M,g.t = Qzp iff M, g,Den(s) = .

As promised, @g jumps to the denotation of s and evaluates its argument there.

Two points need to be made right away. First, sentences of ML+|+@ are
preserved under ML-generated submodels. After all, in a sentence, the only
occurrences of @ will be of the form @,, where y is a state variable bound
by some occurrence of |; as | binds locally, the result follows. Second, @
increases the expressive power of ML+, and does so by upgrading the lines of
communication; to see this, let’s return to our running example, the definability
of Until.**

As we have seen, Until is not definable in ML+] — but it certainly is in
ML+]+@. In fact, ML+|+@ can mimic either the TL+] or the ML+{}! style
definition. Recall that in TL+] we defined Until as follows:

Until(p,) = laFly(p A P(z AG(Fy — 1)))).

But it is easy to capture this definition in ML+|+@. After all, the P(z A ---)
subformula is essentially a way of saying “move to the point named z”, and in
our new language we can express this directly (to ensure that the correspondence
is transparent, we use tense logical notation for O and <©):

Until(p,) = lzFly(p A Q,G(Fy — ¢)).

Next, recall that in ML+{}' we defined Until as follows:

Until(p,) = 1,(O(y Ap) AD(Cy =).

How do we mimic this? As follows:

Until(p,) = laOly@,(O(y Ap) AD(Cy = 1)).

14 A lot more could be said about @, and we can’t possibly say it all here. But two things
are worth mentioning. First, the reader has probably seen something like @ before in other
languages: it’s Prior’s T'(s, @) construct in third grade tense logic, it’s the Holds(s, ¢) operator
introduced by Allen (1984) for temporal representation in AI, and it is the characteristic
operator of the Topological Logic of Rescher and Urquhart (1971). Note that the @ operator
supports a variety of natural interpretations: for example, computationally it can be viewed
as a goto instruction.

But one perspective is particularly relevant here: @ can be viewed as a restricted version of
the universal modality. First, note that Q¢ can be defined as either A(s — ¢) or E(s A ¢),
where FE is the dual if A. In short, @ allows limited access to the power of A, and the limitation
results in a generated submodel for sentences. Interestingly, adding @ to ML+YV also suffices
to yield full first-order expressive power; for more on this see Blackburn and Seligman (998).

In Sofia school work on hybrid languages and modal logic with names, use of the universal
modality is almost invariably taken for granted. However we have found one passage where
Passy and Tinchev express a less satisfied opinion:

So the operator (v) [that is: E] is really a strange one: it realizes something like
half-order quantification, and more precisely, o quantification of order 1/2 + i,
where i is the imaginary unit. (Passy and Tinchev, 1985, Section 3).

In essence, by stripping E down to @ we simplify the situation. As we shall see, Q is precisely
what is needed to drive through elegant completeness results. It leaves no difficult residue,
imaginary or otherwise.

30

The prenex block |z ly@, is simply a way of defining illl.“" Clearly | and @
make a great team; they communicate smoothly and their cooperation will give
rise to an elegant proof theory. As will soon become apparent, @ is the dominant
partner proof-theoretically. For a start, @ allows us to simplify the modal theory
of labeling; we won’t need nested operators in the new Nom axiom. Second,
it will allow us to state a pair of rules called Paste-0 and Paste-1. Unlike the
Paste rule used in the previous section (and indeed, unlike COV), these rules
don’t make use of arbitrarily deep operator nestings; we will be able to paste in
all the nominals we at a depth of at most 1. Moreover, because @ records what
happens at each and every named point, we will find that every MCS contains
a blueprint of an entire collection of MCSs, all neatly indexed by subscripted @
operators. Once this has been grasped, and once the role of the Paste-0 and
Paste-1 has been understood, the completeness proof practically writes itself.

Let’s get to work. We shall present the axiomatization in two stages. First
we'll present the system H[|, @](K), and show that it gives rise to well-behaved
collections of MCSs. We’ll then introduce the Paste rules and show how they
lead to the Existence Lemma. The completeness proof for the minimal logic will
be an immediate consequence; almost as immediate will be the completeness of
many of its extensions.

H[},Q](K) is an extension of the minimal modal logic K. Recall that K
is the smallest set of formulas containing all propositional tautologies, and all
instances of O(p — ¥) — (Op — O%), that is closed under modus ponens (if ¢
and ¢ — v are both provable, then so is ¥) and necessitation (if ¢ is provable
then so is Oy). To the axioms and rules of proof of K we add the following.
First, H[{, @Q](K) is closed under state variable localization for |, and contains
the Q1, Q2, @3 and Self-Dual axioms for |. In addition, for every state symbol
s, it is closed under @g-necessitation (if ¢ is provable then so is @;p) and all
instances of the following axiom schemas.

There are three groups of schemas. The first identifies the basic logic of Q.

K Qs(p = ¥) = (Qsp — Q1))
Self-Dual Qgp + Qg

Introduction s A @ — Qgp

Note that K is simply the familiar modal distribution schema; hence as we
have the rule of @Qs-necessitation, @, is a normal modal operator. Obviously
Self-Dual states that @, is self-dual; but note that, viewed in more traditional
modal terms, it tells us that @, is a modality whose transition relation is a
function: the left-to-right direction is the modal determinism axiom, while the
right-to-left direction is the characteristic axiom of deontic logic. Given the
jump-to-the-labeled-state interpretation of @, this is exactly what we would
expect. Introduction tells us how to introduce information under the scope of

1530 to speak, although we can’t really stay put at the current state and bind variables to
accessible states as we can in ML+{}!, we can do something just as good: we label the current
state with z, use & to move to an accessible state, which we label y, and then use @ to jump
us back to z. With this done, we can carry on as if we never left the current state in the
first place. In a similar way we can define an existential quantifier over states accessible in 2
steps (¢;‘;<p = JzO0lyQg); and indeed, for any natural number n, an existential quantifier
over states accessible in n steps. Note that the duals of all these operators also have neat
definitions: for example, Uiap = Jx00|yQg .

31

the @ operator. Actually, it also tells us how to get hold of such information,
for if we replace ¢ by -, contrapose, and make use of Self-Dual, we obtain
(s A Qgp) — @; we call this is Elimination schema.

The next group is our modal theory of labeling. The @ operator allows us
to formulate this simply and directly:

Name Qgs
Nom Qgt — (Qzp — Qgp)
Swap Qgt < Qs

Scope @ Qgp < Qgp
The final group tells us how @ and < interact:
Back CQgp — Qg

Bridge <sAQgp — Op

And that’s H[|,@](K). Much of what we subsequently need can be estab-
lished in this system, so before introducing the Paste rules, let’s prove the follow-

ing lemma; ‘consistency’ and ‘MCS’ here mean mean H[|, @](K)-consistency,
H[}, Q(K)-MCS, and so on.

Lemma 29 Let T' be an MCS that contains a state symbol, and for all state
symbols s, let As be {¢ | Qs € T'}. Then:

1. For every state symbol s, A, is an MCS that contains s.
2. For all state symbols s and t, Qzp € A, iff Qzp € T

3. There is a state symbol s such that I = A,.

4. For all state symbols s, Ay = {p | Qs € A,}.

5. For all state symbols s and t, if s € Ay then Ay = A,.

Proof. Clause 1. First, for every state symbol s we have the Name axiom Qgs,
hence s € A,;. Next, A; is consistent. For assume for the sake of a contradiction
that it is not. Then there are 6y, ...,0, € A such that - —(6; A ... Ad,). By
@;-necessitation, F @;—(d; A...Ady), hence @;—(d1 A...Ady) isin T, and thus by
Self-Dual —=Qg(p1 A ... A py) is in T too. On the other hand, as 41, ...,0, € Ay,
we have @44, ...,@,4,, € T'. By simple modal argumentation (all we need is the
fact that @, is a normal modality) it follows that @s(d1 A ... A dp,) € T as well,
contradicting the consistency of I'. We conclude that A; must be consistent
after all.

It remains to show that A, is maximal. So assume it is not. Then there
is a formula x such that neither x nor —y is in A,;. But then both -@Q,x and
—@;—x belong to I', and this is impossible: if =@,y € T', then by self duality
@;—x € T as well, and we contradict the consistency of I'. So A is maximal.

Clause 2. We have Q,p € A, iff @Q,p € T. By Scope, @QQ,p € T iff
@yp € I'. (We call this the @-agreement property; though simple, it plays an
important role in our completeness proof.)

32

Clause 3. By assumption, I' contains at least one state symbol; let us call
it s. If we can show that ' = Ay, we will have the result. But this is easy.
Suppose ¢ € I. Then as s € I', by Introduction Qg;p € T, and hence ¢ € A,.
Conversely, if ¢ € Ay, then Qgp € T'. Hence, as s € T', by Elimination we have
pel.

Clause 4. Use Introduction and Elimination, much as in the previous para-
graph.

Clause 5. Let A; be such that s € Ay; we shall show that A; = A,. First
observe that since s € Ay, we have that @Q,s € I'. Hence, by Swap, Qst € T
too. But now the result is more-or-less immediate. First, A; C A,. For if
p € Ay, then Q;p € T'. Hence, as Q,t € T, it follows by Nom that Q;p € T,
and hence that ¢ € A, as required. A similar Nom-based argument shows that
A, CA, A

This lemma gives us a lot — in essence it says that, given a state-symbol-
containing MCS, the subscripted @ operators index a well-behaved collection of
MCSs; the Ay certainly seem plausible model-building material. Nonetheless,
they don’t yet have all the properties we want. First, note that we usually build
our models out of named MCSs, that is, MCSs that contain nominals; named
sets are automatically |-witnessed (this follows immediately from 2; in fact,
we made use of this in the first part of Lemma 16), thus we can prove the clause
of the Truth Lemma for | without having to worry about accidental binding.
But note that even if T itself is named (say by 7), we have no guarantee that
the A; are named too. For example, I' may contain @;—j for all nominals j,
in which case A, won’t contain any nominals at all, though of course it will
contain x. And there’s a second, more serious, problem. Suppose we take the
collection of A, yielded by a named MCS as the building blocks of our model:
how do we know that this model supports an Existence Lemma? Bluntly, we
don’t.

The Paste rules enable us to fix both shortcomings. Here they are:

FQs(tAgp) — 0 FQsO(tAyp) =0
FQgp — 0 FQsCp — 6

The rule on the left is called Paste-0, the rule on the right Paste-1. In both,
t must be a state symbol distinct from s that does not occur in ¢ or 6. Let
H[|, @](K)+Paste be the system obtained by adding both rules to H[{, @](K);
until further notice, proof-theoretic concepts such as ‘consistent’ and ‘MCS’ are
used with reference to this enriched system. We defer till the end of the section
discussion of the admissibility of these rules; for now we’ll concentrate using
them to prove completeness.

The key rule is Paste-1. It trades on the same idea as the Paste rule for
TL+]. In fact, if we use the tense logical notation F' for <, and write Fp for
F(s A) as we did in the previous section, Paste-1 becomes:

FQ.Fip — 0
FQgFp— 0

Clearly this is essentially the same as the Paste rule used in previous section.
Its core is unchanged: as before (read the rule from bottom to top) it tells us
that introducing a brand new label under the scope of the F' (that is, <) is a

33

consistency preserving operation. The important difference is the way we access
this core. In the previous section we used sequences of indexed tense operators
to do this; here we simply use the @ operator to insist that this core reasoning is
acceptable at any labeled state. We shall leave the reader to ponder the simpler
Paste-0 rule (essentially it says that giving a brand new name to a labeled
state isn’t going to cause any problems) and prove the Extended Lindenbaum’s
Lemma we need.

Definition 30 (Pasted MCSs) An MCS T is O-pasted iff Q;p € T' implies
that for some mominal i, Qz(i A @) € T'. It is 1-pasted iff @Q;Cp € T' implies
that for some nominal i, Q;O(i A @) € T'. We say that T is pasted iff it is both
0-pasted and 1-pasted.

Lemma 31 (Extended Lindenbaum’s Lemma) Let £ and L be countable
languages such that L1 is L enriched with a countably infinite set of new nom-

inals. Then every consistent set of L-formulas can be extended to a named and
pasted LT-MCS.

Proof. Enumerate the new nominals. Given a consistent set of L-formulas &,
define ®; to be ® U {j}, where j is the first new nominal. By exactly the same
J-based argument used in the proof of the Extended Lindenbaum Lemma, for
H[I](K:) (see Lemma 22) it follows that ®; is consistent.

We now paste. Enumerate all the formulas of £T, define 6° to be ®;, and
suppose we have defined @™, where m > 0. Let ¢, 11 be the m+1-th formula in
our enumeration. We define @™+ as follows. If @™ U {41} is inconsistent,
then @™+ = @™. Otherwise:

1. 0™t = 0™ U {pmy1} if @ma1 is not of the form @,v or @,O¢. Here s
is a state symbol, and v is a state variable.

2. O™ = O™ U {pmt1} U {Q,u(kAv)}, if @y is of the form @,v. Here k
is the next new nominal that does not occur in ©™.

3. O™ = 0" U{pmi1tU{QsO(kAQ)}, if oma1 is of the form @O . Here
k is the next new nominal that does not occur in @™ or @< .

Let © = |J,>0©" It is clear that this set is named, maximal, and 1-
pasted. Furthermore, it must be consistent, for the only non-trivial aspects of
the expansion are those defined by items 2 and 3, and Paste-0 and Paste-1
respectively guarantee that these are consistency preserving.

So it only remains to check that © is 0-pasted; because of the rather limited
way item 2 uses Paste-0 this may not be entirely obvious. First, note that by
basic modal reasoning - @6 A Q) — @Q4(8 A1)). So suppose Qg p € E. If s
is a nominal, say 4, then because @;i is an axiom, @;(i A ¢) € X as required.
On the other hand, if s is a variable, say x, then because of the pasting process
carried out in item 2, for some nominal ¢ we have that Q, (i A z) € ©. As Q; is
a normal modal operator, @,i € ©, so @Q,(i A ¢) € £. We conclude that © is
the required named and pasted £+-MCS. 4

We’re now ready to prove the completeness of H[|, @Q](K) +Paste — in fact
we have everything we need to prove the completeness of many of its extensions
as well.

34

Definition 32 (Named models and natural assignments) LetT be a named
and pasted MCS. For all state symbols s, let As be {¢ | Qs € T'}, and define S
to be {A; | s is a state symbol}. Then we define M, the named model yielded
by T, to be (S,R,V), where R and V' are the restrictions of R® (the canonical re-
lation) and V¢ (the canonical valuation) to S. We define the natural assignment
g:SVAR — Sbyg(x) ={se€ S|z € s}

Such named models have all the structure we want. For a start, by Clause 3
of Lemma 29, T' € S, and by Clause 5, V is a standard valuation and g is
a standard assignment. Note that we don’t need to ‘complete’ this model by
gluing on a dummy state *; every state symbol finds a home right from the
start. Further, all states in the model contain nominals, because I is pasted
(and hence, 0O-pasted). It follows from this, using @2, that every state in the
model is |-witnessed, so we have the structure needed to push through the clause
of the Truth Lemma for |. Moreover, we know from Lemma 29 that M is well
behaved as far as @ is concerned. So it only remains to ensure that such models
support an Existence Lemma. This, of course, is where 1-pasting comes in:

Lemma 33 (Existence Lemma) Let M = (S,R,V) be the named model
yielded by a named and pasted set T'. Suppose ® € S and Op € ©. Then
there is a ® € M such that ©R® and ¢ € P.

Proof. As © € S, for some nominal ¢ we have that ® = A;; hence as Oy € 0,
@;Cp € T'. But I' is pasted (and hence 1l-pasted) so for some nominal £k,
@; Ok Ap) € T, and so Ok A) € A;. If we could show that (1) A;RAy,
and (2) ¢ € Ay, then Ay would be a suitable choice of ®. And in fact Bridge
and Back, aided by the @-agreement property of our model (that is, item 2 of
Lemma 29) will let us establish this.

For (1), we need to show that for any ¢ € Ay, we have that O¢ € A;. So
suppose 1 € Ag. This means that @i € I'. By @-agreement, @) € A;. But
Ok € A;. Hence, by Bridge, Oy € A; as required.

For (2), we know that C(k A @) € A;. But - kA ¢ — Qe (this is an
instance of Introduction), hence OGQgp € A;. But then, by Back, Qpp € A;.
By @-agreement, Qg € T'. Hence ¢ € Ay, as required.

Lemma 34 (Truth Lemma) Let © be an MCS in M. For all formulae ¢,
Y €O ff M,0 = ¢.

Proof. Straightforward: the Existence Lemma just proved handles the modal
case, and the fact that named sets are |-witnessed handles the clause for |. The
argument for @ runs as follows: M,0 | Q¢ iff M, Ag |= ¢ (for by Clause 3
of Lemma 29, A, is the only MCS containing s, and hence, by the the atomic
case, the only state in M where s is true) iff ¢» € A, (inductive hypothesis) iff
@z € Ay (using the fact that s € A, together with Introduction for the left-
to-right direction and Elimination for the right-to-left direction) iff Qs € ©
(by the @-agreement property for the MCSs in S). Thus all cases have been
proved, and the Truth Lemma follows by induction. -

Theorem 35 (Completeness) Every H[|, Q](K)+Paste-consistent set of for-
mulas in a countable language L is satisfiable in a countable standard model with
respect to a standard assignment function. Moreover, every H[|, @](K)+Paste-
consistent set of sentences in L is satisfiable in a countable connected standard
model

35

Proof. The first is proved in the expected way: given a H[|, @Q](K) + Paste-
consistent set of formulas ¥, use the Extended Lindenbaum Lemma to expand
it to a named and pasted set ¥t in a countable language £T. By the Truth
Lemma just proved, the named model and natural assignment that ¥ gives rise
to satisfy ¥ at ¥ 1. This named model need not be connected, but the submodel
generated by XV is, and all sentences in ¥ are true in this submodel. -

But there’s no need to stop here — as we hinted in the previous section, one of
the nicest things about hybrid languages is the relative ease with which general
completeness results for richer logics can be proved.'® Moreover, such results
typically link completeness and frame-definability in a very straightforward way.

A formula is said to define some property of frames (say transitivity) iff
it is valid on precisely the frames with that property (recall from Section 2
that a formula is valid on a frame iff it is impossible to falsify it at any state
in that frame, no matter which valuation or assignment is used). The sort of
results we are after have roughly the following form: for any formula ¢ from
some specified syntactic class, if ¢ defines a property P, then using it as an
additional axiom guarantees completeness with respect to the class of frames
with property P. For ordinary modal languages, the Sahlgvist Theorems are the
best known result of this type (see Sahlqvist (1975)); as we shall see, analogous
results for hybrid languages come far more easily. We shall state and prove two.
The idea underlying both is the same: stop thinking in terms of propositional
variables, and start thinking in terms of state symbols.

We say that a formula of ML+|+@ is pure iff it contains no propositional
variables; our first result concerns pure sentences. As the following examples
show, pure sentences are remarkably expressive; each sentence defines the prop-
erty listed to its right. All these properties are relevant to temporal reasoning,
and (with the exception of transitivity and density) none are definable in ordi-
nary modal logic:

JeO-z Irreflexivity
JeOO0-g Asymmetry
Jz0(Cx —) Antisymmetry
JrOly@, OOy Density
JxO0ly@, Oy Transitivity
120ly@, (O0-y A O12Q, (2 V O2)) Discreteness

Note that the last three expressions work in a very natural way: they simply take

16Historically, this has been a major motivation for exploring hybrid languages. Most
authors mention what happens when ML or TL is extended with both V and A: as Bull (1970)
points out (see page 285), all first-order extensions of the basic logic are easily proved complete,
and there is brief argument to the same effect at the end of Gargov, Passy and Tinchev (1987).
However Passy and Tinchev (1991) push matters much further; like the earlier Passy and
Tinchev (1985), this paper takes PDL as the underlying modal language and explores what
happens beyond the first-order barrier. The concerns of the present paper are rather different:
what happen in weaker local languages?

36

advantage of the fact that | and @ can simulate the |}*, |, and |}*> operators.?
Let us say that a pure sentential axiomatic extension of H[|, Q](K) + Paste
is any system obtained by adding as axioms a set of pure sentences of ML+/+@.

Theorem 36 (Extended Completeness I) Let Pure be a set of pure sen-
tences of ML+|+@, and let P be the pure sentential axiomatic extension of
H[|, @])(K) + Paste obtained by adding all sentences in Pure as azioms. Then
every P-consistent set of formulas in a countable language L is satisfiable in a
countable standard model, based on a frame that validates every axiom in Pure,
with respect to a standard assignment function. Moreover, every consistent set
of sentences in L is satisfiable in o countable connected standard model based
on a frame that validates Pure.

Proof. An easy corollary of Theorem 35: given a P-consistent set of formulas
%, build a satisfying model by expanding ¥ to a set ©% in a countable language
L*, and forming the named model M = (S, R, V) and the natural assignment
g. Now, the named model is built of MCSs, and each axiom in Pure belongs
to every P-MCS, thus by the Truth Lemma, M, g = Pure. But as Pure con-
tains only sentences, the choice of assignment is irrelevant, hence M |= Pure.
Moreover, as Pure contains only pure sentences, the choice of valuation is also
irrelevant, and (S, R) = Pure. This proves the first claim. Finally, if ¥ contains
only sentences, we obtain a connected model by restricting our attention to the
submodel generated by ¥T; the underlying subframe validates Pure. -

As a simple application of this result, note that we obtain the minimal
temporal logic for ML+|+@ by adding as axioms Jx0-z and Jx00]y@, Oy; the
previous theorem guarantees that the named model will validate these axioms,
hence as they define irreflexivity and transitivity respectively, the named model
will have these properties.

This is pleasant, but let’s push things further. Theorem 36 requires us to
use sentences as axioms. However it can be more natural to use pure schemas.
Consider, for example, the schema ¢Os — ©s. Any instance of this schema
defines transitivity, and it is easy to verify that including all instances as axioms
guarantees a transitive named model. Similarly, any instance of the schema

OsANOt 5 [O(sAOt) VO(sAt) VO(EA Os)]

defines the no-branching-to-the-right property, and including all instances as
axioms guarantees a named model with this property. Both transitivity and
no-branching-to-the-right are definable using pure sentences,'® but the use of
schemas can offer more. A simple example is the schema <s; any instance of
this defines the class of frames (S, R) such that R = S x S, and its inclusion as
an axiom schema imposes this property on named models.*®

7For example, the definition of density can be rewritten as U;<><>y (“every state y that
can be reached in one step can be reached in two steps”), the definition of transitivity is
UgOy (“every state y that can be reached in two steps can be reached in one step”), while
discreteness simplifies to ,L;(DDﬂy AJL@y (2 v ©z)) (“there is a successor state y, that is not
2-step reachable, from which any successor state z is 0- or 1-step reachable”).

18The pure sentence U;Ui(Oy ANOCz = [O(y A Oz) V Oy A z)V O(z A Oy)]) defines no-
branching-to-the-right.

19We don’t know many temporally relevant examples in ML+|+@ that require the use
of schemas, but examples are easy to find in TL+]. For example, the schema Ps VsV F's
guarantees us trichotomy (that is, Vzy(zRy V & = y V yRx)), while PF's guarantees us left-
directedness (that is, Vxy3z(zRx A zRy).

37

What’s going on here? A moments thought shows that the use of schemas is
really equivalent to allowing occurrences of the global hybrid binder V in prenex
position. For example, including all instances of G<Cs — Os is really equivalent
to using V(OOx — Ox) as an axiom; the prenex V-sentence encapsulates all the
information contained in the schema. Let’s make this precise.

Let ¢ be a pure formula of ML+ |+@; for example

i = Oly(—i A Q;O(—i A y)).

is such a formula. We obtain a pure schema when we uniformly replace all
occurrences of a free-variables and nominals by metavariables over state sym-
bols, and uniformly replace occurrences of bound variables by metavariables
over state symbols. For example, the following schema is obtainable from our
example:

s = Olv(-s A QO (—s A V).

Note that any schema we can build is obtainable from a formula that contains
no nominals (simply use free variables instead) and that any such formula is an
instance of the schema it gives rise to. We are ready for the key concept:

Definition 37 (V-encapsulations) Let S be any pure schema, let o be any
formula containing no nominals that gives rise to S, and let x1, ..., x, be
all the wvariables that occur free in . Then the sentence Vx ---Vr,o is a V-
encapsulation of S.

Lemma 38 Let M = (S,R,V) be a model such that for all s € S, there is
a nominal © such that V(i) = {s}. Then for any schema S and any variable
assignment g, if M,g |= S, then M |= V& ---Va,0, where Vz ---Va,0 is the
V-encapsulation of S.

Proof. We show the contrapositive. If M £ Vz---Vz,o then there is some
state s € S such that M, s, g £ Vz - --Va,0. This means there is some g’ that
differs from ¢ only on what it assigns to 1,..., Z,, such that M, s, ¢’ £ o. So
we’ve falsified an instance of the schema; unfortunately we’ve done so using ¢,
not g. But because every state in M is named by some nominal we can repair
this: let 41, ..., i, be nominals such that V(i1) = ¢'(z1), ..., V(in) = ¢'(z4)-
Then, by the Substitution Lemma,

M7 59 l# U[il/m17 v 7in/w"]7
hence we have falsified an instance of S in M under g as required. -

Lemma 39 Let 6 be a V-encapsulation of of a schema S, and let (S,R) be a
frame such that (S, R) = 6. Then every instance of S is valid on (S, R).

Proof. Straightforward.

A pure schematic extension of H[|, @](K)+Paste is any system obtained by
adding all ML+]+@ instances of a set of pure schemas of ML+|+@ as axioms
to H[}, @](K) + Paste.?°

201t’s perhaps worth stressing that we're not adding any formulas that contain occurrences
of the hybrid binder V as axioms; the axioms are all ML+|+@ formulas. The detour via
V-encapsulations formulas is simply an easy way of proving that all these ML+|+@ formulas
have the effect we want.

38

Theorem 40 (Extended Completeness IT) Let Schemas be a set of pure
schemas of ML+ +@, and let S be the pure schematic extension of H[|, Q](K)+
Paste obtained by adding all instances of the schemas in Schemas as azioms.
Then every S-consistent set of sentences in a countable language L is satisfiable
i a countable standard model, based on a frame that validates all these axioms,
with respect to a standard assignment function. Moreover, every consistent set
of sentences in L is satisfiable in a countable connected standard model based
on a frame that validates all these axioms.

Proof. Again we build a satisfying model M = (S, R,V) and assignment g as
described in Theorem 35. By the Truth Lemma, every instance of every schema
in Schemas is satisfied at every state in this model; that is, for all S € Schemas we
have M, g = S. Now for the key step: every state in the named model is named
by some nominal, hence Lemma 38 is applicable, and for all S € Schemas we
have M, g E Vz---Va,0, where Yz - - -Vz,0 is the V-encapsulation of S. Now,
all these encapsulations are pure sentences (of course, sentences of ML+V+|+@,
not sentences of ML+|+@) hence both the assignment and the valuation are
irrelevant, and we conclude that (S, R) = Vx ---VYz,0. Hence, by Lemma 39,
every instance of every schema is valid on (5, R), which is what we wanted
to show. Finally, if ¥ contains only sentences we obtain a connected model by
restricting our attention to the submodel generated by ¥T; as an easy argument
shows, as all instances of schemas in Schema are valid on (5, R), they remain
valid on this generated subframe.

What sort of coverage do Theorems 36 and 40 offer? For a start, note that
all our examples of frame properties definable by pure sentences or (instances
of) pure schemas were first-order. This is no accident: a simple extension of
the Standard Translation for the basic modal language shows that every pure
formula of ML+]+@ defines a first-order condition on frames. The Standard
Translation for the basic modal language is defined as follows:

ST, (p) = Pz, for all propositional symbols p
ST, (_‘(P) = ST, (‘P)

STy (e AY) = STy(p) A ST (e)

ST,(Op) = Vy(zRy — STy(v))

(In the first clause, P is a monadic second-order predicate variable; each propo-
sitional symbol corresponds uniquely to such a symbol.) Following Blackburn
and Seligman (1998), we extend this translation to ML+|+@ as follows: we
assume that the first-order variables we have available consist of all the usual
state variables, plus a distinct variable x; for each nominal i and define:

ST (y) = 2z =y, for all state variables y
ST () = x =z, for all nominals ¢
STo(lzp) = Fylz =y A STe(p))

ST (Qyp) = STy(p)

Suppose ¢ is a formula of ML+ +@; we suppose that ¢ has been a-converted
so that it contains no occurrences of the variable x (we reserve this variable to
denote the current state). It is easy to see that ST,(yp) will contain at least
one free variable (namely z). It is also easy to see that this extended version of

39

ST preserves satisfaction. That is for any ML+]+@ formula ¢, any standard
model M = (S, R, V), any standard assignment g, and any s € S:

M,s,g = ¢ ifft ME ST:(p)ls g(2), V(i), V(p)]-

The notation on the right means: assign s to the free variable z, assign the
unique element of g(z) to z if z occurs free in the translation, assign the unique
element of V(i) to x; if z; occurs free in the translation, and assign V' (p) to P
if P is a monadic predicate variable that occurs free in the translation. Now we
can see why it pays to be pure: if ¢ contains no propositional variables, then
the previous expression simplifies to

M.g,s = ¢ iff M ST,(p)[s,g(2), V()]

We are now firmly in the world of first order logic. But let’s carry on. We have:

M,g ¢ ifft M V2ST,(v)[g(2), V(i)],

and hence:
(S,R) E ¢ iff (S,R) [EVz1---Vz V2 ST, ().

On the righthand side we have simply universally quantified over all the free-
variables in VzST,(p). In short, the frame property any pure formula defines
can be calculated by applying the standard translation and and forming the
universal closure. Thus Theorem 36 and 40 bear a certain family resemblance
to the Sahlqvist Theorems: all these results cover first-order properties which
can be effectively calculated from the relevant axioms.

There are a host of related questions worth pursuing. For example, we have
seen many examples of first-order properties which are not modally definable but
which are definable using pure formulas; can all modally definable first-order
conditions be captured in this way? And if not, can all Sahlqvist definable
properties be so captured??' But we leave such questions for another time and
turn to the admissibility of the Paste rules.

We do not know whether Paste-1 is admissible in H[|, @](K), and believe
that there is an interesting open question here:

Is Paste-1 admissible in H[|, Q](K) or some finite ariomatic exten-
sion?

The key word here is finite. Because we can define the operators || for all
natural numbers n, it seems clear that we can define an infinite extension of
H[|,Q](K) in which Paste-1 is admissible.?> The interesting issue is whether
the effect of Paste-1 can be captured using only finitely many new axioms.

211ncidentally, there are first-order properties which are modally definable but not Sahlqvist
definable, which can be defined by pure sentences. For example, the property transitivity +
atomicity (Vz3y(zRy A Vz(yRz — z = y))) is definable by the conjunction of the transitiv-
ity axiom and the McKinsey formula (O0OCp — <0Op), but no Sahlqvist formula defines this
condition. Incidentally, McKinsey does not define atomicity, and in fact, no ordinary modal
formula does this; only transitivity 4+ atomicity is modally definable. But the following pure
sentence defines atomicity: |x<OlyO]zy. Note that @ is not needed. And we have already
seen that transitivity is definable by a pure sentence.

22The obvious way of doing this would be to generalize the ideas underlying H[}, '](14);
in particular we would make use of a whole cascade of Barcan analogs that generalized the
idea of Barcanig.

40

Matters are somewhat clearer for Paste-0; the following semantic argument
seems to show that Paste-0 is admissible in H[], @Q](K). When proving Theo-
rem 35, we only used Paste-0 to guarantee that each A, contained a nominal.
But as far as we can see, our proof goes through substantially unchanged if
we let our model contain states A, that are only ‘named’ by a free variable.
Proving completeness with such models is trickier; for example, we need to wit-
ness | formulas with variables not nominals, and this requires careful use of
a-conversion to prove the Truth Lemma. But the basic argument is the same
and seems only to require resources available in H[], Q](K). Admittedly, such
an argument sketch runs the risk of overlooking a principle that falls outside
H[}, @](K), but it seems safe to conclude that Paste-0 is either admissible in
H[|, @](K) itself, or in some simple axiomatic extension. As yet we can’t yet
back up this semantic argument up with an explicit syntactic demonstration of
admissibility, and we would like to be able to do so.

7 Working with other sorts

Our technical work is done, but our conceptual work is not. The reader may have
gained the impression that hybridization is simply the business of quantifying
over states in a modal setting. Of course, that’s part of the story, and an
important part at that, but we believe that a far more general idea is at work,
and that it deserves to be made explicit.

In essence, our preceding work rested on a simple idea: combining two dis-
tinct forms of information in a uniform way. Our languages dealt with arbitrary
information (via the propositional symbols) and labeling information (via the
state symbols) and yet we drew no distinction between terms and formulas;
they were both handled “propositionally”. Now the natural question is: if this
works for state-name information, why shouldn’t it work for other types of in-
formation as well? For example, in some applications we might want to work
with intervals, or events, or paths; so why not introduce special atomic symbols
that range such entities and allow ourselves to bind them? In short, why not
attempt hybridization in a far more ambitious way?23

Intriguingly, there are at least two ways of doing this. The first involves little
change to the work of previous sections. For example, working with intervals in
a modal logic standardly means working with richer frames, perhaps frames of
the form (S, <, C). Here S is thought of as a set of intervals, < as the precedence
relation on intervals, and C as inclusion relation on intervals.2* Or perhaps we’d

231n fact, in suggesting this we are merely echoing Arthur Prior, for this idea was an im-
portant — perhaps the dominant — theme in his later work; the key reference here is the
posthumous Prior and Fine (1977), which consists of draft chapters of a book, together with
papers, and an invaluable appendix by Kit Fine which attempts to systematically reconstruct
Prior’s views. Prior attached immense philosophical weight to this project; in his view it
showed that that possible worlds were not needed to analyze modal notions; and indeed, that
times were not needed to analyze temporal expressions. Only (suitably sorted) propositions
mattered.

Prior’s philosophical position is interesting: it is strongly information oriented, has natural
affinities with frameworks such as Property Theory and Situation Semantics, and deserves
further exploration. Nonetheless, here we prefer to adopt a neutral perspective on the philo-
sophical significance of hybrid languages: for present purposes, they are simply an elegant tool
for talking about structures locally, and adding further sorts is simply an interesting technical
idea.

24Various constraints would be imposed to make this interpretation plausible. Typically we

41

prefer working with frames bearing the 14 relations demanded in Allen (1984).
Either way, the fundamental point is that we are enriching our notion of what
a state is by locating it in a richer web of relations. This mode of enrichment
is obviously compatible with the methods discussed earlier; for example, it is
straightforward to work with Allen-style intervals using | and @.2%

But there is another way of developing multi-sorted hybrid languages. This
hinges on the following simple observation: some types of information can be
thought of as structured sets of states. For example, an interval is the set of
all states between two end points.2® Why not add atomic symbols that range
over such sets? After all, we already have propositional symbols that range over
arbitrary subsets, and state-symbols which range over singleton subsets — so
why not symbols that range over convex sets too? This is arguably a useful idea
(see Blackburn (1999, 1993)) and it is certainly simple to handle logically.?” But
to illustrate the structured-set based approach to sorting in more detail we want
to discuss not intervals but paths, because this example not only provides a nice
illustration of the potential of sorting for temporal logic, it also makes clear that
even simple looking extensions can give rise to highly non-trivial problems.

A hybrid path language

Many applications of temporal logic demand the use of paths, or courses of
history. For example, for philosophical purposes it is natural to model the
idea that the future is unknown by using tree-like models of time that branch
into alternative futures, and in computer science it is standard to reason about
unravelings of non-deterministic transition systems. On the face of it, these
applications only seem to demand that we work with new classes of tree-like
models, and clearly we can do that with the tools we already have. But this is
only half the story. As well as new models, we are faced with new expressive
demands, and these will lead us to new territory.2®

would demand that (S, <) be a strict partial order, that (S,C) be partial order, and that <
and L interacted appropriately (for example, we’d want Vstt'((s CtAt <t') = —s C t')); see
van Benthem (1983) for further discussion.

25The ‘straightforward’ is justified: many of the frame properties required are expressible by
pure sentences or schemas, hence completeness for will often be automatic. For example, |z[C
]Gly@y;—~Fy regulates the interaction of < and C (here [C] means “at all super-intervals”).
As a second example, we have already noted that atomicity (which we may want for C) is
enforceable using a pure sentence (see Footnote 21). Incidentally, it would be interesting
to compare an |- and @-based treatment with Yde Venema’s two-dimensional analysis (see
Venema (1990)).

260f course, one might want to distinguish between various types of intervals, such as open
and closed, but we won’t do so here.

2TIncidentally, readers familiar with the representation theorems for abstract interval struc-
tures in terms of point-based structures proved in van Benthem (1983) will (rightly) suspect
that in many cases this structured-set approach to hybrid interval logic will turn out to be
equivalent to the additional-relations approach mentioned above. Incidentally, this ‘duality’
between the two approaches to sorting may well be useful in the more difficult case of hybrid
path languages discussed below, but we won’t follow this suggestion up here.

281t’s worth stressing that there are wide range of reasons for being interested in path based
temporal logics, and that the motivations just given barely begin to scratch the surface of this
rich and varied domain. Moreover, in both the philosophical and theoretical computer science
literatures there is a vast range of non-deterministic models of time and associated logics. We
are not going to attempt to address the wide variety of issues these raise; our aim is simply
to define a simple hybrid language for talking about the paths that exist in tree-like models,
and discuss its more obvious properties, both pleasant and problematic.

42

For example, in natural language semantics we would like to have a future
tense operator F such that F is true precisely when ¢ holds somewhere in every
possible future (that is, when ¢ holds at least once on every path through the
current state). However we can’t define F in any of our hybrid languages; even
abandoning locality and working with ML+V+A doesn’t help. As a second
example consider fairness. In computer science applications we may want to
insist that a process is activated infinitely often along every possible computation
path; but our state symbols won’t help us define a fairness operator. Thus we
have a genuine expressivity shortcoming on our hands. Let’s try to fix it by
hybridization.2?°

The basic strategy for dealing with paths in hybrid languages should be
clear. First we add a third sort, the sort of path symbols (presumably we want
to keep the state symbols, though this of course is optional). As with state
symbols, path symbols should be divided into two subcategories, namely path
variables (which will be open to binding) and path nominals (which will not).
So we choose PVAR to be a countably infinite set of path variables (whose
elements we typically write as p and p') and PNOM to be a countably infinite
set of path nominals (whose elements we typically write as 7 and 7'), and of
course we choose these sets to be disjoint from each other and from PROP,
SVAR, and NOM. We define the set of atoms of our enriched language to be
PROP USVAR UNOM U PVAR UPNOM.

The second step is to add a binder. We shall add a binder called {™; we’ll
add it to ML + | + {}*, thus forming the language ML + | + ||* + {/™. As the
notation should suggest, {}™ is a universal quantifier over paths through the
current state (that is, ‘local paths’). The wifs of this language are defined in the
expected way, as are such concepts as free and bound path variables, so let’s
proceed straight to the semantics.

We shall work with strictly partially ordered trees (S, R), and adopt Bull’s
definition of a path: a path 7 in (S, R) is a a linearly ordered subset of S that
is maximal among the linearly ordered subsets of S. That is, paths are convex
subsets of S that contain the root node and are closed under R-successorship.
We denote the set of paths in (S, R) by II(S, R). If = € II(S, R) and s € 7 then
we say that 7 passes through s. Obviously II(S, R) is never empty, and at least
one path passes through every state.

Definition 41 (Standard models and assignments) Let ML+ |+ + 4"
be a hybrid language built over PROP, SVAR, NOM, PVAR and PNOM. A
model M for this language is a triple (S,R,V) such that (S,R) is a strictly
partially ordered tree, and V : PROP UNOM U PNOM — Pow(S). A model
is called standard iff for all nominals i € NOM, V (i) is a singleton subset of S,
and for all path nominals T € PNOM, V(1) € II(S, R).

An assignment on M is a mapping g : SVAR U PVAR — Pow(S). An
assignment is called standard iff for all state variables x € SVAR, g(z) is a

29We are not the first to do this. Motivated by Prior’s arguments, Robert Bull added a
universal quantifier over paths to TL+V+A in his classic 1970 paper; thus, far from being the
new kid on the block, hybridization is actually one of the oldest approaches to path based
reasoning we know of. We return to Bull’s work later in the section. A recent paper by
Goranko on hybrid languages strong enough to embed CTL* (see Goranko (1996b)) is also
worth noting. In one way Goranko’s language is weaker than the language discussed here (it
doesn’t doesn’t contain path binders, only path nominals) and in another way it is stronger
(it contains the the universal modality).

43

singleton subset of S, and for all path variables p € PNOM, V(p) € I(S, R).

Now to interpret the language. The atomic clause is automatically taken
care of by our [V, g] notation, and the clauses for the Booleans and modalities
are unchanged. So it only remains to interpret {}™:

M,g,s =l iff M,g',s = ¢, forall ¢/ £ g such that s € ¢'(p)

That is, {" is a universal quantifier over local paths; the dual binder ¢:,r<p is an
existential quantifier over local paths.

It is easy to see that sentences of this language are preserved under generated
submodels. Moreover, the expressivity has clearly been boosted. For example,
we can now define the F operator:

Fo = ;0o A y).

It is also straightforward to define a fairness operator:

Fair(p) = 45(C(pA @) ALO((@ApAp) = O(pA).

At any state s in a standard model, Fair(p) is true at a state s iff ¢ is true
infinitely often along every path through s.

Moreover, it is also easy to see that many of the (by now familiar) principles
of hybrid reasoning extend to our new binder. For example, the rule of path
variable localization (if ¢ is provable then so is {7¢p, for any path variable
p) preserves validity, and all instances of the following three groups of axiom
schemas are valid:

Q1 Uple =) = (v = Up¥)
Q2 Upy = (p = ¢[p/P))
Q3 Un(p =) = Upeb

Local-Path i,Zp

(Here p and p are used as metavariables across path variables and path symbols
respectively. In @1, p must not be free in ¢; and in @2, p must be substitutable
for p in ¢.) In short, the basic quantificational powers of ||" described by Q1
~ Q3 are analogous to those of | and |}'. Moreover Local-Path is a clearly
analogous to the Name axiom for |.

Here’s another similarity with our earlier work; we have a Barcan analog:

Barcan, UpOp = Ol

The contraposed and dualised form <>¢Zcp — ¢Z<><p is perhaps easier to grasp.
Essentially this says: “if we can select a suitable path at a successor state,
then we can select a suitable path at the current state”; in essence, it is a path
existence principle.

Our language also supports simple axioms that reflect the geometry of paths
(we use T as a metavariable over path nominals and i and j as metavariable over
state nominals):

44

Pl Or—>T
P2 TNANOT = Or1

P8 CHAATIAOGAT) > OCAAQHVOEAJ) VOGA L)

Clearly P1 reflects convexity, P2 reflects R-maximality under successorship, and
P3 reflects linearity; note the way the state and path nominals cooperate here.
Summing up, in many ways ML + | + ' + ™ is a pleasant language. It offers
a natural way of talking about paths, and validates many familiar principles.

That was the good part — let’s turn to the bad. It seems that proving
completeness results for this language will require new ideas; the apparatus of
named models used in previous sections does not seem to extend naturally to
the new language. Worse, the method takes us disconcertingly far, and then
lets us down. We shall illustrate the problem by showing what goes wrong if
one tries to build a model for formulas consistent with respect to H[},{'](I4)
augmented with the rules and axioms for ™ just listed.3°

To extend the model building technique for H[|,{}'](I4) to our hybrid path
language, we first extend our concept of witnessing as follows: if ¢Z<p el
then there is a path nominal 7 such that |J¢ — (¢[7/p] A7) € T. Extend-
ing Lemma 11 to an Extended Lindenbaum’s Lemma for this richer notion of
witnessing is routine.

Second, the turning point of our completeness proof for ML + | + ' was
Lemma 16, in which we proved that named MCSs in witnessed models were
themselves witnessed. Interestingly, this lemma extends straightforwardly to
ML + | + §' + |J™. Because we have Barcan,, it is easy to prove the following
analog of Named- Witness:

Named-Path-Witness (1 A Lj@) = 1 O(T Aelp'/p] A p')

(Here p' is not free in O(7 A J7¢).) With this at our disposal, the required
extension of Lemma 16 is an obvious analog of our earlier work.

This has three more-or-less immediate consequences. First, the Existence
Lemma follows exactly as in our earlier work. Second, some path nominal is
true at every state. Third, for any path symbol, we can prove that the subset
of a witnessed model consisting of all MCSs that contain that symbol is convex,
maximal under R-successorship, and linear. There are one or two refinements of
the earlier model construction that need to be made (for example, to complete
the model we not only need to glue on an extra root node, we need to glue on a
‘dummy successor’ to the dummy root to ensure the R-maximality of the path
symbol interpretations). However, the required ideas are pretty straightforward;
our earlier work provides a scaffolding on which it possible to build a natural
looking model.

So what’s the problem? It’s simple, but deadly: although all states are
named, we don’t have any guarantee that all paths are labeled by some path
symbol. Nothing in our model construction guarantees this, and without it, the
proof of the Truth Lemma does not go through. In other respects, the model

30We would like to stress that we are not claiming that this system is complete. Quite the
reverse — we are using this system because it provides us with what is needed to work most
of the way through a named model construction and then fail. In short provides us with just
enough to illustrate why we have a genuine problem on our hand.

45

is frustratingly well-behaved: it provides a satisfying model for formulas that
don’t contain path symbols, and we can automatically add lots of first order
properties to it as long as we do so using state-symbol axioms. In spite of this,
it’s not the model we want.

This is not easy to fix. For a start, it does not reflect our insistence on
working with local languages. As we mentioned in the introduction, Robert
Bull in his pioneering article on hybrid languages introduced the idea of path
symbols and path binders. Now, Bull worked with a non-local language: he
used the universal modality A, the binder V over states (thus he had access to
the full power of first-order quantification over states) and, instead of the local
U™ binder he used the non-local binder V™ that quantifies over arbitrary paths.
In spite of this power, Bull runs into the same problem. He comments (see
Footnote 5 on page 292) that although not every path is the interpretation of
some path symbol, his model:

... does provide enough paths V(u) to give a reasonable interpreta-
tion.

With this remark, Bull hints at a line of work that has subsequently become
common in path based temporal logic. All reasonably expressive path based
logics we know of (for example, Ockhamist logic or CTL*) face similar difficul-
ties. A standard approach to the problem is to prove completeness with respect
to some suitably liberalized notion of model, for example models containing
‘bundles’ of paths (see Zanardo (1996)). Such approaches have affinities with
the use of generalized models in second-order logic, or general frames in modal
logic. We believe it would be interesting to explore this landscape using hybrid
path languages, and suspect that our named model construction may be useful
in such investigations.

But what of the standard semantics defined above? This may call for a
more brutal line of approach: the use of infinitary rules. Intuitively what is
needed is an infinitary extension of the Local-Path schema. From Local-Path
we can deduce that there is a path through the current state; what we also
need is a principle that ensures that given a sequence of states (one of which
is the current state) that satisfies the convexity, R-maximality, and linearity
principles, then there is a path nominal that is true at all the states in this
sequence. Infinitary rules are unpalatable — but a clean infinitary approach
may provide a framework which can (at least, in some cases of interest) be
suitably finitized; however we must admit that at present we don’t know if there
are realistic prospects of success here. Incidentally, we also think it would also
be interesting to further explore the (finitary) rules used in Goranko (1996b).

And that’s the joys and sorrows of hybrid path languages. We have only
scratched the surface of a vast topic, but we hope we have said enough to
indicate why we find this terrain worthy of further exploration. Moreover we
hope that the potential interest of hybridization to a richer temporal ontologies
is now clear.

8 Concluding remarks

In this paper we argued that the hybridization technique introduced by Arthur
Prior and developed by Robert Bull and the Sofia School is a natural tool for

46

temporal logic. Our argument had both a technical and conceptual side.

Our technical results showed that hybridization is compatible with a locality
assumption, namely that temporal operators and binders should only be able to
examine, or bind to, temporally accessible states. We examined three extensions
of ML+, a local language in which Until was not definable, and showed that:

1. Adding }!, a universal quantifier over successor states, thus forming ML+ |+{}},
yielded a local language which could define Until and whose proof the-
ory over transitive models could be axiomatized without complex rules of
proof.

2. Adding the backward looking tense operators, thus shifting to TL+],
yielded a local language which could define both Since and Until (thus
showing, as we remarked in Footnote 12, that these operators are definable
in terms of past, present, and future) and whose minimal logic could be
simply axiomatized. The completeness proof appealed to a complex rule
of proof called Paste, but this was shown to be admissible.

3. Adding the retrieval operator @, thus forming ML+]+@, yielded a local
hybrid language which could define Until and whose minimal logic had a
simple axiomatization. The axiomatization hinged on a rule called Paste-
1, a simple @-based version of the tense logical Paste rule. We posed the
admissibility of Paste-1 as an open problem.

In addition, we proved two general Sahlqvist-style results for extended logics;
these results covered a number of temporally interesting properties including
density and discreteness. Summing up, our technical investigations fulfill the
first and second wishes listed at the end of Section 2, and (in our view) the third
as well: we feel they exhibit a genuine synergy of modal and classical ideas.

It’s only fair to warn the reader that we pay a price for this: the minimal
logics discussed in this paper lack the finite model and are undecidable; this
can be proved using the ‘spy point’ method introduced in Blackburn and Selig-
man (1995). Of course, the logics of many interesting frame classes are decidable
(for example, the logics of various classes of trees can be proved decidable using
Rabin-style arguments; see Blackburn and Seligman (1998)), nonetheless the
fact remains that binding variables to states tilts the underlying computational
properties firmly in the classical direction.

This may be a price worth paying. Because these languages internalize
the notion of ‘label’ in the object language, we are not restricted to axiomatic
systems but can devise a wide range of proof systems; Seligman (1997) discusses
natural deduction and sequent-based methods for global languages, and recent
work shows that such methods work for local languages as well. Thus there
are natural strategies for developing hybrid languages computationally, and in
our view the opportunities offered by ‘internalized labels’ amply compensate for
undecidability, but a full discussion is beyond the scope of the present paper.

Our conceptual argument in favor of hybridization is essentially a secular
version of Prior’s program of viewing abstract entities as propositions. That is,
we feel that regardless of whether there is an interesting metaphysical sense in
which arbitrary information types should be thought of propositionally, freely
combining different sorts of information in one modal algebra is a natural way

47

of thinking about temporal reasoning over rich ontologies. A particularly in-
triguing kind of sorting involves sorts whose elements are structured sets of
states; paths are perhaps the most important example. We showed (elaborating
on Bull (1970)), that a path sort could be incorporated into local hybrid lan-
guages, that they offered a natural way of extending expressivity, and that they
validated a number of the hybrid axiom schemas encountered in earlier sections.
We showed that completeness poses difficult questions, and suggested avenues
for further work.

Acknowledgments

We would like to thank the referees for their comments on the first version of
this paper, and Natasha Kurtonina for her comments on later versions. Patrick
Blackburn would like to thank Aravind Joshi and the staff of the IRCS, Univer-
sity of Pennsylvania, for their hospitality while the final version of this paper
was being prepared.

References

[1] J. Allen. Towards a general theory of knowledge and action. Artificial
Intelligence, 23:123-154, 1984.

[2] J. van Benthem. The Logic of Time. Reidel, 1983.

[3] P. Blackburn Nominal Tense Logic and Other Sorted Intensional Frame-
works. PhD Thesis, Centre for Cognitive Science, University of Edinburgh,
1990.

[4] P. Blackburn. Nominal tense logic. Notre Dame Journal of Formal Logic,
14:56-83, 1993.

[5] P. Blackburn. Tense, temporal reference, and tense logic. Journal of
Semantics, 11:83-101, 1994.

[6] P. Blackburn and J. Seligman. Hybrid languages. Journal of Logic, Lan-
guage and Information, 4:251-272, 1995.

[7] P. Blackburn and J. Seligman. What are hybrid languages? In M. Kracht,
M. de Rijke, H. Wansing, and M. Zakharyaschev, editors, Advances in
Modal Logic, Volume 1, pages 41-62. CSLI Publications, Stanford Uni-
versity, 1998.

[8] P. Blackburn and M. Tzakova. Hybrid completeness. Logic Journal of the
IGPL, 4:625-650, 1998.

[9] P. Blackburn and M. Tzakova. Hybridizing concept languages.
Manuscript, 1998a.

[10] R. Bull. An approach to tense logic. Theoria, 36:282-300, 1970.

[11] J. Burgess. Basic tense Logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, volume 2, pages 135-165. D. Reidel,
1984.

48

[12] M. Cresswell. Entities and Indices. Kluwer, 1990.

[13] D. Gabbay. Investigations in Modal and Tense Logics with applications to
Problems in Philosophy and Linguistics. Synthese Library, Volume 92. D.
Reidel, 1976.

[14] D. Gabbay and I. Hodkinson. An axiomatization of the temporal logic with
since and until over the real numbers. Journal of Logic and Computation,
1:229-259, 1990.

[15] G. Gargov, S. Passy and T.Tinchev. Modal environment for boolean
speculations (preliminary report). In D. Skordev, editor, Mathematical
Logic and its Applications. Proc. of the Summer School and Conference
dedicated to the 80th Anniversary of Kurt Gddel, Druzhba, 1986, pages
253-263. Plenum Press, 1987.

[16] G. Gargov and V. Goranko. Modal logic with names. Journal of Philo-
sophical Logic, 22(6):607-636, 1993.

[17] V. Goranko. Temporal logic with reference pointers. In D. Gabbay and
H. J. Ohlbach, editors, Proceedings of the 1st International Conference on
Temporal Logic, volume 827 of LNAI, pages 133-148. Springer, 1994.

[18] V. Goranko. Hierarchies of modal and temporal logics with reference
pointers. Journal of Logic, Language and Information, 5(1):1-24, 1996.

[19] V. Goranko. An interpretation of computational tree logics into tempo-
ral logics with reference pointers. Technical Report 2/96, Verslagreeks
van die Department Wiskunde, RAU, Department of Mathematics, Rand
Afrikaans University, Johannesburg, South Africa, 1996b.

[20] J.A-W. Kamp. Formal properties of “now”. Theoria, 37:227-273, 1971.

[21] S. Passy and T. Tinchev. Quantifiers in combinatory PDL: complete-
ness, definability, incompleteness. In Fundamentals of Computation The-
ory FCT 85, volume 199 of LNCS, pages 512-519. Springer, 1985.

[22] S. Passy and T. Tinchev. An essay in combinatory dynamic logic. Infor-
mation and Computation, 93:263-332, 1991.

[23] A. Prior. Past, Present and Future. Oxford University Press, Oxford,
1967.

[24] A. Prior. ‘Now’. Nous, 2:101-119, 1968.

[25] A. Prior and K. Fine. Worlds, Times, and Selves. University of Mas-
sachusetts Press, 1977.

[26] N. Rescher and A. Urquhart. Temporal Logic. Springer Verlag, 1971.

[27] B. Richards, I. Bethke, J. van der Does, and J. Oberlander. Temporal
Representation and Inference. Academic Press, New York, 1989.

49

[28] H. Sahlqgvist. Completeness and correspondence in the first and second
order semantics for modal logic. In S. Kanger, editor, Proceedings of
the Third Scandinavian Logic Symposium. Uppsala 1973, pages 110-143.
North-Holland, 1975.

[29] J. Seligman. The logic of correct descriptions. In M. de Rijke, editor,
Advances in Intensional Logic. Applied Logic Series, Kluwer, 1997.

[30] M.P.A. Sellink. Verifying modal formulas over I/O-automata by means
of type theory. Logic group preprint series, Department of Philosophy,
Utrecht University, 1994.

[31] Y. Venema. Expressiveness and completeness of an interval tense logic.
Notre Dame Journal of Formal Logic, 31:529-547, 1990.

[32] F. Vlach. Now and Then: A Formal Study in the Logic of Tense Anaphora.
PhD Thesis, UCLA, 1973.

[33] A. Zanardo. Branching-time logic with quantification over branches: the
point of view of modal logic. Journal of Symbolic Logic, 61:1-39, 1996.

50

