
Hybrid Tableaux for the Difference Modality

Mark Kaminski1 Gert Smolka1

Programming Systems Lab
Saarland University

Saarbrücken, Germany

Abstract

We present the first tableau-based decision procedure for basic hybrid logic with the difference modality.
The decision procedure is gracefully degrading in that the less expressive constructs don’t pay for the
computationally expensive difference modality. The procedure can be specialized to reflexive and transitive
frames. Key features of our approach are nominal elimination, pattern-based blocking, and expansion
control.

Keywords: hybrid logic, modal logic, difference modality, terminating tableaux, decision procedures

1 Introduction

Modal logic with the difference modality Dp = λx. ∃y. x 6 .=y ∧ py is an expressive
language [2,4]. It can express the global modality Ep = p ∨̇Dp and nominals
!p = E(p ∧̇ ¬̇(Dp)). Gargov and Goranko [17] show that basic modal logic with D

is equivalent with respect to modal definability to basic hybrid logic with E (see
also [19,10,26,1]).

Tableaux for modal logic with D are not well-understood. In a recent handbook
chapter on modal proof theory [14], an unsound tableau calculus for basic modal
logic with D is given. A sound and complete tableau calculus for basic modal logic
with D is given by Balbiani and Demri [2]. Unfortunately, Balbiani and Demri’s
calculus does not yield a decision procedure as it does not terminate on all inputs.

Recently, several tableau-based decision procedures for hybrid logic with E have
been proposed [6,5,22]. The goal behind this work is the design of modular decision
procedures that are gracefully degrading if more expressive constructs like E are
used. So far, it has been open whether this approach extends to D [5].

This paper presents a tableau-based decision procedure for basic hybrid logic
with E and D that is gracefully degrading. Its key features are a pattern-based
blocking condition for the �-rule and a substitution rule eliminating nominals. Since

1 Email: {kaminski,smolka}@ps.uni-sb.de

4 February 2008

mailto:kaminski@ps.uni-sb.de


Kaminski and Smolka

the substitution rule also eliminates equations, straightforward model constructions
suffice. We show how our decision procedure can be adapted to reflexive and tran-
sitive frames.

Existing tableau-based decision procedures [6,5] for hybrid logic with global
modalities (A and E) rely on recording chronological information concerning the
construction of tableaux (e.g., prefix order and urfathers). Our procedure seems to
be the first tableau-based decision procedure for hybrid logic with global modalities
that terminates without recording chronological information.

The calculus of Balbiani and Demri [2] employs a computationally expensive cut
rule. To avoid the general inefficiency coming with this rule, we integrate it into
the rule for the dual of D. Thus the costs of the cut rule need only be paid if the
dual of D is used.

The paper is organized as follows. We start with a representation of hybrid logic
in simple type theory. Next, we present the tableau rules. Then we formulate and
prove a weak and a strong model existence theorem. The expandedness conditions
of the weak model existence theorem yield blocking conditions for the tableau rules
yielding a terminating control we call expansion control. We prove termination and
obtain a decision procedure. Then we adapt our results to reflexive and transitive
frames. We conclude with a discussion of our approach and related work.

2 Hybrid Logic with E and D

We represent modal logic in simple type theory, which gives us an expressive syntax
and a solid foundation. The basic idea of the representation goes back to Gallin [15]
and can also be found in Gamut [16] (Section 5.8, two-sorted type theory). Since
the type-theoretic representation formalizes the semantics of modal logic at the
object level, one can prove meta- and object-level theorems of modal logic with a
higher-order theorem prover [3].

We start with two base types B and S. The interpretation of B is fixed and
consists of two truth values. The interpretation of S is a nonempty set whose
elements are called worlds or states. Given two types σ and τ , the functional type
στ is interpreted as the set of all total functions from the interpretation of σ to the
interpretation of τ . We write σ1σ2σ3 for σ1(σ2σ3).

We employ three kinds of variables: Nominal variables x, y, z of type S, propo-
sitional variables p, q of type SB, and relational variables r of type SSB. Nominal
variables are called nominals for short. We use the logical constants

⊥,> : B .= : SSB
¬ : BB ∃, ∀ : (SB)B

∨,∧,→ : BBB

Terms are defined as usual. We write st for applications, λx.s for abstractions, and
s1s2s3 for (s1s2)s3. We also use infix notation, e.g., s ∧ t for (∧)st.

Terms of type B are called formulas. We employ some common notational
conventions: ∃x.s for ∃(λx.s), ∀x.s for ∀(λx.s), and x 6 .=y for ¬(x .=y).

The formulas of modal logic can be either translated to type-theoretic formulas

2



Kaminski and Smolka

(as in [15,16,20,22]) or directly represented as terms of type SB (as in [7,3]). Here
we use the latter approach, which is more elegant since it models modal syntax
directly as higher-order syntax. To do so, we need lifted versions of the Boolean
connectives, which are defined as follows:

¬̇px = ¬(px) ¬̇ : (SB)SB

(p ∧̇ q)x = px ∧ qx ∧̇ : (SB)(SB)SB

(p ∨̇ q)x = px ∨ qx ∨̇ : (SB)(SB)SB

We can now write terms like p ∧̇ ¬̇q, which represent modal formulas. Here are the
definitions of the remaining modal constants we will use:

〈r〉px = ∃y. rxy ∧ py 〈 〉 : (SSB)(SB)SB
[r]px = ∀y. rxy → py [ ] : (SSB)(SB)SB
Epx = ∃p E : (SB)SB
Apx = ∀p A : (SB)SB
Dpx = ∃y. x6 .=y ∧ py D : (SB)SB
D̄px = ∀y. x .=y ∨ py D̄ : (SB)SB
ẋy = x

.=y ˙ : SSB
@xpy = px @ : S(SB)SB

We call a term t : SB modal if it has the form

t ::= p | ¬̇t | t ◦ t | µrt | νt | ẋ | @xt

where ◦ ∈ {∧̇, ∨̇}, µ ∈ {〈 〉, [ ]}, and ν ∈ {E,A,D, D̄}.
Our type-theoretic presentation of hybrid logic, in particular of nominals as

objects of type S, reveals that the essential extension of the basic modal language
introduced in basic hybrid logic is the presence of equality at the object level. In
this sense, we can see basic hybrid logic as basic modal logic with equality.

A modal interpretation M is an interpretation of simple type theory that in-
terprets B as the set {0, 1}, ⊥ as 0 (i.e., false), > as 1 (i.e., true), maps S to a
non-empty set, gives the logical constants ¬, ∧, ∨, →, ∃, ∀, .= their usual meaning,
and satisfies the equations defining the modal constants ¬̇, ∧̇, ∨̇, 〈 〉, [ ], E, A, D,
D̄, ˙ , and @. Instead of Mt = 1 we also write M � t and say that M satisfies t,
or that t is valid in M. A formula is called satisfiable if it has a satisfying modal
interpretation.

We use H(D) as name for the logic given by modal terms and modal interpre-
tations.

We now give some additional syntactic definitions that are needed for the rest
of the paper. A modal term s : SB is called normal if it is in negation normal form,
that is, has the form

s ::= p | ¬̇p | s ◦ s | µrs | νs | ẋ | ¬̇ẋ | @xs

where ◦ ∈ {∧̇, ∨̇}, µ ∈ {〈 〉, [ ]} and ν ∈ {E,A,D, D̄}. A formula s is called normal

3



Kaminski and Smolka

R∧̇
(s ∧̇ t)x
sx, tx

R∨̇
(s ∨̇ t)x
sx | tx

R3

〈r〉tx
rxy, ty

y /∈ VΓ R2

[r]tx rxy

ty

RE

Etx

ty
y /∈ VΓ RA

Atx

ty
y ∈ VΓ RD

Dtx

x 6 .=y, ty
y /∈ VΓ RD̄

D̄tx

x
.=y | ty

y ∈ VΓ

R .=
x
.=y ∈ Γ

Γxy
RN

ẋy

x
.=y

RN̄

¬̇ẋy
x 6 .=y

R@

@ytx

ty

Γ is the tableau branch to which a rule is applied.
Fig. 1. Tableau Rules C

if it has the form
s ::= x

.=y | x 6 .=y | rxy | tx
where t is a normal modal term. A formula of the form rxy is called an accessibility
formula.

Given a term t, we write Vt for the set of variables that occur free in t, and |t|
for the size of t. When necessary, V is extended to sets of terms in the natural way.
For instance, given a set of terms X, VX :=

⋃
{Vt | t ∈ X}.

We write txs for the term obtained from t by capture-free replacement of the free
occurrences of x in t by s. Like in the case of V, the notation for substitution is
extended pointwise to sets of terms.

3 Tableau Rules

A branch is a non-empty set Γ of normal formulas. We say that a formula s is
on a branch if s ∈ Γ. A branch is closed if it contains a formula x 6 .=x or two
complementary formulas s and ¬̇s. A branch is open if it is not closed. A modal
interpretation satisfies a branch Γ if it satisfies every formula s ∈ Γ. A branch is
satisfiable if it has a satisfying interpretation. A branch is unsatisfiable if it is not
satisfiable.

Proposition 3.1 Every closed branch is unsatisfiable.

Tableau rules are applied to branches and yield one or two extended branches.
A tableau rule is sound if, when applied to a branch, this branch is unsatisfiable if
and only if each of the extended branches is unsatisfiable. A set of tableau rules is
complete if repeated application of the rules can reduce every unsatisfiable branch
to a set of closed branches. Our goal is a set of tableau rules that, under a suitable
control, is terminating and still complete. Together with the control, such a set of
tableau rules yields a decision procedure for the validity or unsatisfiability of the
modal terms of H(D). To decide the validity of a modal term s, one computes
the negation-normal form t of ¬̇s, selects a nominal x /∈ Vt, and then applies the
tableau rules to the branch {tx}.

Our decision procedure will employ the set C of tableau rules shown in Figure 1.
The soundness of the rules is easy to verify.

4



Kaminski and Smolka

Proposition 3.2 The tableau rules C are sound.

If you are familiar with prefixed tableau systems for basic model logic, the rules
R∧̇, R∨̇, R3, and R2 will look familiar. Note that our use of type theoretic syntax
yields prefixes and accessibility formulas for free. The rules for the remaining modal
constants are derived from the defining equations of the constants in Section 2.
There is one trick: We have written the defining equation for D̄ in Section 2 with
a disjunction rather than an implication so that it induces the right rule.

The ruleR .= is a substitution rule that when applied to a nontrivial equation x .=y
eliminates the nominal x from the branch. Hence we call it nominal elimination.
In contrast to the other rules, which add formulas, nominal elimination modifies
formulas on the branch by replacing all occurrences of a nominal x with occurrences
of a nominal y. The use of nominal elimination is crucial for our approach to
termination. It also provides for straightforward model existence theorems.

4 Weak Model Existence

To prove completeness of the tableau rules C we need a model existence theorem.
We start with a naive model existence theorem directly induced by the tableau rules
(with the exception of RD, see the discussion in Section 8). We then refine it in the
next section to a strong model existence theorem yielding the completeness of the
rules under a terminating control.

We call a normal formula s expanded on a branch Γ if one of the following
expandedness conditions holds:

(E∧) s = (t1 ∧̇ t2)x and t1x, t2x ∈ Γ

(E∨) s = (t1 ∨̇ t2)x and t1x ∈ Γ or t2x ∈ Γ

(E0
3) s = 〈r〉tx and there is some y such that rxy, ty ∈ Γ

(E2) s = [r]tx and for every y such that rxy ∈ Γ, ty ∈ Γ

(EE) s = Etx and there is some y such that ty ∈ Γ

(EA) s = Atx and for every y ∈ VΓ, ty ∈ Γ

(ED) s = Dtx and there is some y 6= x such that ty ∈ Γ

(ED̄) s = D̄tx and for every y ∈ VΓ either x .=y ∈ Γ or ty ∈ Γ

(E .=) s = x
.=y and x = y

(EN ) s = ẋy and x
.=y ∈ Γ

(EN̄ ) s = ¬̇ẋy and x 6 .=y ∈ Γ

(E@) s = @ytx and ty ∈ Γ

A branch Γ is expanded if every formula t ∈ Γ is expanded on Γ. A branch Γ is
expanded with respect to an expandedness condition E if every formula t ∈ Γ of the
form corresponding to E is expanded on Γ. For instance, Γ is expanded with respect
to E .= if and only if every equation on Γ is trivial (i.e., has the form x

.=x).
For every branch Γ we obtain a modal interpretation MΓ as follows:

5



Kaminski and Smolka

x0 = the least variable in VΓ
MΓS = VΓ
MΓx = if x ∈ VΓ then x else x0

MΓp = λx ∈ VΓ. if px ∈ Γ then 1 else 0
MΓr = λx ∈ VΓ. λy ∈ VΓ. if rxy ∈ Γ then 1 else 0

For convenience, we will use relational notation for MΓr, that is, treat it as a set of
pairs.

Theorem 4.1 (Weak Model Existence) Let Γ be an open and expanded
branch. Then MΓ satisfies Γ.

Proof. Let t ∈ Γ. By induction on |t| we prove that MΓ satisfies t.

Case t = px. Assume px ∈ Γ. Then MΓ(px) = MΓpx = 1 by the definition of
MΓp.

Case t = ¬̇px. Assume ¬̇px ∈ Γ. Since Γ open, px /∈ Γ, i.e., MΓ(px) = MΓpx = 0.
Hence MΓ � ¬̇px.

Case t = x
.=y. Assume x .=y ∈ Γ. By E .=, MΓx = x = y = MΓy, i.e., MΓ � x

.=y.

Case t = x 6 .=y. Assume x6 .=y ∈ Γ. Since Γ open, MΓx = x 6= y = MΓy, i.e.,
MΓ 6� x .=y. Hence MΓ � x 6 .=y.

Case t = ẋy. Assume ẋy ∈ Γ. By EN , x .=y ∈ Γ. Since MΓ � ẋy ⇐⇒ MΓ � x
.=y,

the claim follows by Case t = x
.=y.

Case t = ¬̇ẋy. Assume ¬̇ẋy ∈ Γ. By EN̄ , x 6 .=y ∈ Γ. Since MΓ � ¬̇ẋy ⇐⇒ MΓ �
x 6 .=y, the claim follows by Case t = x 6 .=y.

Case t = rxy. Assume rxy ∈ Γ. Then (x, y) ∈MΓr, i.e., MΓ � rxy.

Case t = @ysx. Assume @ysx ∈ Γ. By E@, sy ∈ Γ. By the inductive hypothesis,
MΓ � sy. Hence MΓ � @ysx.

Case t = (t1 ∧̇ t2)x. Assume (t1 ∧̇ t2)x ∈ Γ. By E∧, t1x ∈ Γ and t2x ∈ Γ. By the
inductive hypothesis, MΓ � t1x and MΓ � t2x, and hence MΓ � (t1 ∧̇ t2)x.

Case t = (t1 ∨̇ t2)x. Analogously to the preceding case.

Case t = 〈r〉sx. By E0
3, there exists some y such that rxy, sy ∈ Γ. Hence by

induction, (x, y) ∈ MΓr and MΓsy = MΓ(sy) = 1. So, y witnesses validity of
〈r〉sx in MΓ.

Case t = [r]sx. Assume [r]sx ∈ Γ. We have to show that for every pair (x, y) ∈
MΓr it holds MΓsy = 1. So assume (x, y) ∈ MΓr. By the definition of MΓr,
rxy ∈ Γ. Then, by E2, sy ∈ Γ. By the inductive hypothesis it holds MΓsy =
MΓ(sy) = 1.

Case t = Asx. Assume Asx ∈ Γ. To show: MΓsy = 1 for all y ∈ MΓS. So, let
y ∈ MΓS be arbitrary. By EA, sy ∈ Γ. By the inductive hypothesis, MΓsy =
MΓ(sy) = 1.

Case t = Esx. Assume Esx ∈ Γ. By EE , there is some y such that ty ∈ Γ. By the
inductive hypothesis, MΓsy = MΓ(sy) = 1, i.e., y witnesses validity of Esx in
MΓ.

Case t = D̄sx. Assume D̄sx ∈ Γ. To show: for every y ∈MΓS, either MΓy = MΓx

6



Kaminski and Smolka

A(〈r〉p)x

RA

〈r〉px
R3

rxy, py

RA

〈r〉py

R3

...

Fig. 2. A Non-terminating Tableau Derivation

or MΓsy = 1. So, let y ∈ MΓS be arbitrary. By ED̄, either x .=y ∈ Γ or ty ∈ Γ.
In the former case, by E .= it holds MΓx = x = y = MΓy. Otherwise, by the
inductive hypothesis, MΓsy = MΓ(sy) = 1.

Case t = Dsx. Assume Dsx ∈ Γ. By ED, there is some y 6= x such that ty ∈ Γ.
Clearly, MΓx = x 6= y = MΓy. By the inductive hypothesis, MΓsy = MΓ(sy) =
1. Consequently, y witnesses validity of Dsx in MΓ. 2

5 Strong Model Existence

Application of the tableau rules stops if either a closed or an open and expanded
branch is reached. Hence the expandedness conditions determine whether a termi-
nating control exists. As it turns out, the expandedness condition E0

3 coming with
the weak model existence theorem does not provide for a terminating control. The
problem is caused by the interplay of RA and R3 and can be seen from the infinite
tableau derivation shown in Figure 2. The derivation starts from the satisfiable
branch {A(〈r〉p)x}.

To obtain a terminating control, we will employ an expandedness condition E3
for diamond formulas that is weaker than E0

3 but still suffices for a model existence
theorem. Here is the definition:

(E3) A formula 〈r〉tx is weakly expanded on a branch Γ if there are formulas ryz ∈ Γ
and tz ∈ Γ such that [r]sy ∈ Γ for all [r]sx ∈ Γ.

Note that a diamond formula that is expanded on a branch Γ is also weakly expanded
on Γ. To ease our language, we call non-diamond formulas weakly expanded on Γ
if they are expanded on Γ. A branch Γ is called weakly expanded if every formula
on Γ is weakly expanded on Γ.

To show that weakly expanded branches are satisfiable if they open, we need
the notion of safe accessibility formulas. An accessibility formula rxy is called safe
for a branch Γ if sy ∈ Γ for all formulas [r]sx ∈ Γ.

Proposition 5.1 Let Γ be an open and weakly expanded branch. If ∆ is a set of
accessibility formulas that are safe for Γ, then Γ ∪∆ is open and weakly expanded.

7



Kaminski and Smolka

Proof. Adding accessibility formulas rxy does not affect openness. The only ex-
pandedness condition that may be affected by adding accessibility formulas is E2.
However, since only safe accessibility formulas are added, expandedness with respect
to E2 is not destroyed. 2

Proposition 5.2 Let Γ be an open and weakly expanded branch. Then there exists
a set ∆ of accessibility formulas safe for Γ such that Γ ∪∆ is open and expanded.

Proof. We choose ∆ such that it contains an accessibility formula for every dia-
mond formula on Γ that is not expanded on Γ. Let 〈r〉tx ∈ Γ be such a formula.
Since 〈r〉tx is weakly expanded on Γ, there are formulas ryz ∈ Γ and tz ∈ Γ such
that [r]sy ∈ Γ for all [r]sx ∈ Γ. Since Γ is expanded with respect to E2, we have
sz ∈ Γ for all [r]sx ∈ Γ. Hence rxz is safe for Γ. We choose rxz as the accessibility
formula for 〈r〉tx ∈ Γ on ∆. By Proposition 5.1 we know that Γ ∪ ∆ is open and
weakly expanded. It remains to show that 〈r〉tx is expanded on Γ ∪∆. This is the
case since Γ ∪∆ contains rxz and tz. 2

Theorem 5.3 (Strong Model Existence) Every open and weakly expanded
branch is satisfiable.

Proof. Follows from Proposition 5.2 and Theorem 4.1 (weak model existence). 2

6 Termination

We only consider finite branches in the following. The tableau rules in Figure 1
are applied to a particular formula s on a particular branch Γ. For instance, RD is
applied to formulas of the form Dtx. We impose the control that a rule can only
be applied to a formula s on a branch Γ if Γ is open and s is not weakly expanded
on Γ. We refer to this control as expansion control. We call a branch Γ terminal if
no rule can be applied to it under expansion control.

Proposition 6.1 A terminal branch is either closed or weakly expanded.

Proof. Straightforward verification of rules weak expandedness conditions. 2

We write Γ → ∆ if the branch ∆ can be obtained from Γ by a single rule
application under expansion control. We have a decision procedure for H(D) if the
relation Γ→ ∆ is terminating.

To establish termination, we define a function C that assigns to every branch
a complexity CΓ ∈ N5 such that CΓ > C∆ if Γ → ∆. For CΓ > C∆ we choose
the terminating lexical order obtained from the terminating order > on the natural
numbers N. The component complexities are named as follows:

CΓ = (CEΓ, CDΓ, C3Γ, C .=Γ, CRΓ)

CEΓ, CDΓ, C3Γ, and C .=Γ measure the contribution of the rules RE , RD, R3,
and R .=, respectively. CRΓ measures the contribution of the remaining rules. An
application of R3, for instance, will decrease C3Γ and not increase CEΓ and CDΓ.

We write Mod Γ for the set of all modal terms occurring on Γ, possibly as
subterms. Since Γ is finite, Mod Γ is finite. The crucial observation is that all rules

8



Kaminski and Smolka

but R .= leave Mod Γ unchanged, and that R .= does not increase the cardinality of
Mod Γ.

Proposition 6.2 If Γ→ ∆ by a rule different from R .=, then Mod Γ = Mod ∆. If
Γ→ ∆ by R .=, then |Mod Γ| ≥ |Mod ∆|.

We now define the component complexity

CEΓ := |Mod Γ− { s | ∃x : sx ∈ Γ }|

Obviously, CEΓ is decreased by RE and not increased by any of the other rules.
The definition

CDΓ := |Mod Γ− { s | ∃y : sy ∈ Γ }|
+ |Mod Γ− { s | ∃x, y : {sx, x 6 .=y, sy} ⊆ Γ }|

follows the same idea. One can verify that CDΓ is decreased byRD and not increased
by any of the other rules. That the second argument of the sum is needed can be
seen with the branch {Dsx, x 6 .=y, sy,Dsy} where Dsy is not expanded. To see that
R .= does not increase CDΓ note that Γ is terminal if it contains a disequation x6 .=x.

A pattern is a set of the form {〈r〉s, [r]t1, . . . , [r]tn} where n ≥ 0. We use Pat Γ
to denote the set of all patterns that are subsets of Mod Γ. Pat Γ is a finite set left
unchanged by all rules but R .=. Moreover, R .= does not increase the cardinality
of Pat Γ. A pattern {〈r〉s, [r]t1, . . . , [r]tn} is expanded on a branch Γ if there are y,
z such that {ryz, sz, [r]t1y, . . . , [r]tny} ⊆ Γ. If R3 is applicable under expansion
control, it expands a not yet expanded pattern. Hence we define

C3Γ := |Pat Γ− {P ∈ Pat Γ | P expanded in Γ }|

One can verify that R3 decreases C3Γ and the other rules do not increase C3Γ.
We have now treated all nominal-introducing rules. The contribution of R .= is

that it eliminates a nominal. Hence we define

C .=Γ := number of nominals occurring on Γ

Clearly, R .= decreases C .=Γ and all other rules but RE , RD, and R3 leave C .=Γ
unchanged.

The remaining rules leave the nominals and modal subterms of the branch un-
changed. They always add a formula x .=y or x 6 .=y or sx where s is modal. Besides
these formulas Γ may also contain formulas rxy. Hence we define

CRΓ := 2(C .=Γ)2 + (Rel Γ) · (C .=Γ)2 + |Mod Γ| · (C .=Γ)− |Γ|

where Rel Γ denotes the number of relational variables occurring on Γ. All rules
but RE , RD, R3, and R .= decrease CRΓ. This ends our termination proof.

Theorem 6.3 The tableau rules are terminating under expansion control and yield
a decision procedure for H(D).

Expansion control imposes the negations of the expandedness conditions as block-
ing conditions for the tableau rules. We refer to the blocking condition imposed

9



Kaminski and Smolka

by E3 as pattern-based blocking. We see pattern-based blocking and nominal elim-
ination (R .=) as the most innovative features of our decision algorithm. Pattern-
based blocking is needed to obtain termination in the presence of both A and 3.

7 Restricted Frame Classes

Our tableau-based decision procedure can be adapted to frame classes axiomatized
by any combination of

4 ∀r ∀p ∀x. (〈r〉(〈r〉p) →̇〈r〉p)x (transitivity)

D ∀r ∀p ∀x. ([r]p →̇〈r〉p)x (seriality)

T ∀r ∀p ∀x. (p →̇〈r〉p)x (reflexivity)

where →̇ denotes the lifted version of →, analogously to ∧̇ and ∨̇.
Seriality of an accessibility relation r can be enforced by adding the term A(〈r〉>̇)

(where >̇ = λx.>) to the branch whose satisfiability is to be decided.
Transitivity and reflexivity require additional rules (cf. [23,14]):

R4

[r]tx rxy

[r]ty
RT

[r]tx

tx

We define the sets CK4, CT, and CS4 of tableau rules as extensions of C (see Figure 1)
by, respectively, R4, RT, and both R4 and RT. For convenience, C will also be
referred to as CK. Note that in the case of CS4 we could also remove the rule R2 as
it can be simulated by R4 and RT.

While the rules C are sound with respect to the class K of all frames, the sets
CK4, CT and CS4 are sound with respect to their corresponding frame classes.

Proposition 7.1

(i) The rules CK4 are sound with respect to the frame class K4 defined by 4.

(ii) The rules CT are sound with respect to the frame class T defined by T.

(iii) The rules CS4 are sound with respect to the frame class S4 defined by 4 and T.

For each of the new rule sets, the notion of expandedness is adapted by replacing
E2 by, respectively:

(EK4
2 ) [r]tx is expanded on Γ if for every y such that rxy ∈ Γ, {ty, [r]ty} ⊆ Γ.

(ET
2 ) [r]tx is expanded on Γ if tx ∈ Γ and, for every y such that rxy ∈ Γ, ty ∈ Γ.

(ES4
2 ) [r]tx is expanded on Γ if tx ∈ Γ and, for every y such that rxy ∈ Γ, [r]ty ∈ Γ.

It is easy to see that condition ES4
2 is equivalent to the conjunction of EK4

2 and ET
2 .

The notions of terminality and (weak) expandedness of branches are adapted
to the new rules in the natural way, and written as CL-terminality and (weak) CL-
expandedness, respectively, for L ∈ {K,K4,T,S4}. Expansion control is adapted
accordingly.

10



Kaminski and Smolka

Termination of the modified calculi is shown in exactly the same way as before,
with the new rules treated together with the remaining rules (CRΓ).

As for completeness, all we need is to adapt our definition of safe accessibility
formulas according to the individual frame restrictions. So, for L ∈ {K,K4,T,S4},
we call a formula rxy safe for a branch Γ with respect to CL (CL-safe) if:

L = K and sy ∈ Γ for all formulas [r]sx ∈ Γ (same as in Section 5),

L = K4 and (x, y) ∈ ({(x, y) | {sy, [r]sy} ⊆ Γ for all formulas [r]sx ∈ Γ})+,

L = T and rxy is CK-safe for Γ or x = y,

L = S4 and (x, y) ∈ ({(x, y) | {sy, [r]sy} ⊆ Γ for all formulas [r]sx ∈ Γ})∗.

To deal with transitivity, we need an additional lemma.

Lemma 7.2 If Γ is weakly CK4-expanded, rxy is CK4-safe for Γ and [r]tx ∈ Γ,
then {ty, [r]ty} ⊆ Γ.

Proof. The formula rxy being CK4-safe for Γ means there is some n ≥ 1 such that
(x, y) ∈ ({(z, u) | for all s : [r]sz ∈ Γ implies su, [r]su ∈ Γ})n. The claim follows by
straightforward induction on n. 2

Propositions 5.1 and 5.2 are adapted as follows.

Proposition 7.3 Let L ∈ {K,K4,T,S4}. Let Γ be an open and weakly CL-
expanded branch. If ∆ is a set of accessibility formulas safe for Γ, then Γ ∪ ∆
is open and weakly CL-expanded.

Proof. The case L = K is covered by Proposition 5.1, so let us focus on the
remaining cases. Adding accessibility formulas does not affect openness of Γ. The
only expandedness condition that may be affected by adding accessibility formulas
is EL2 . So, assuming rxy ∈ ∆, it suffices to show that adding rxy to Γ preserves EL2 .

Case L = K4. By Lemma 7.2.

Case L = T. Then either rxy is CK-safe for Γ or x = y. In the latter case, it suffices
to check that for every formula [r]tx ∈ Γ it holds tx ∈ Γ, which is the case by the
first part of ET

2 . In the former case, we additionally have to ensure that ty ∈ Γ,
which holds because rxy is CK-safe.

Case L = S4. Clearly, rxy is CS4-safe for Γ if and only if rxy is either CT-safe
or CK4-safe for Γ. Since ES4

2 implies both ET
2 and EK4

2 , the claim holds by a
straightforward combination of the reasoning used in the preceding two cases. 2

Proposition 7.4 Let L ∈ {K,K4,T, S4}. Let Γ be an open and weakly CL-
expanded branch. If ∆ is the set of all accessibility formulas safe for Γ, then Γ∪∆
is open and CL-expanded.

Proof. By Proposition 7.3, it suffices to show that every formula 〈r〉tx ∈ Γ is
expanded on Γ ∪∆, which is proven similarly to Proposition 5.2 in all four cases.2

A proof of the following weak model existence theorem can be obtained simply
by replacing the notions of expandedness and safe accessibility formulas in the proof
of Theorem 4.1 by their parametric versions defined in this section.

11



Kaminski and Smolka

Proposition 7.5 Let L ∈ {K,K4,T,S4}. Let Γ be an open and CL-expanded
branch. Then MΓ

L satisfies Γ.

It remains to show that, for L ∈ {K4,T,S4}, the model M∆
L of an open and

CL-expanded branch ∆ := Γ ∪ {rxy | rxy CL-safe for Γ} belongs to the frame class
L. Reflexivity of our model in the cases of L = T and L = S4 follows from
the fact that rxx is CL-safe for Γ for every x ∈ VΓ. In the cases of L = K4
and L = S4, we know additionally that the relation {(x, y) | rxy CL-safe for Γ} is
transitive. So, to conclude that our entire model is transitive, it suffices to show
that a CL-expanded branch Γ contains only CL-safe transitions, which is actually
true for L ∈ {K,K4,T, S4}.

Proposition 7.6 Let L ∈ {K,K4,T,S4}. If Γ is weakly CL-expanded, then every
rxy ∈ Γ is CL-safe for Γ.

Theorem 7.7 (Strong Model Existence) Let L ∈ {K,K4,T,S4}. Every open
and weakly CL-expanded branch is satisfiable within the frame class L.

One may wish to deal with cases where different accessibility relations underlie
different restrictions. This is possible by replacing the variable r in R4 and RT by
fixed parameters representing specific relations. Also, the expandedness condition
for boxes will need to distinguish between different relations to match the respective
assumptions.

8 Discussion

8.1 The Role of Equality

The tableau rules in Figure 1 clarify the role of equality. If an equational modality
(D, D̄, and ẋ) is used, the tableau rules will introduce equations. Thus we have
modal logic with equality if we use difference modalities or the nominal modality ẋ
of hybrid logic. Since the formula ẋy is semantically equivalent to an equation x .=y,
one can avoid the introduction of equations and work with formulas ẋy. Similar
tricks are employed in the prefixed and internalized tableaux of Bolander and Black-
burn [5]. Since we rely on classical logic as the underlying logic, where equality is
a well-understood primitive, avoiding equations in the syntax would not be helpful.
In fact, we see it as an argument in favor of the type-theoretic presentation of modal
logic that such syntactic tricks are not needed.

8.2 Alternative Expandedness Conditions

The expandedness condition ED for difference formulas differs from the remaining
conditions in Section 4 in that, once established for a formula, it is not necessarily
preserved by substitution. Consider the branch Γ = {Dpx, py, x .=y}. Observe that
Dpx is expanded on Γ, so the rule RD is not applicable. An application of R .= to Γ
yields ∆ = {Dpy, py, y .=y}. But Dpy is no longer expanded on ∆, so RD becomes
applicable again.

The reader may be wondering why, instead of ED, we don’t take an expandedness
condition that corresponds more closely to the tableau rule RD and is preserved by
substitution:

12



Kaminski and Smolka

A(D(D(Dp)))x

RA

D(D(Dp))x

RD

x 6 .=y, D(Dp)y

RD

y 6 .=z, Dpz
RD

z 6 .=x′, px′

RA

D(D(Dp))x′

RD

...

Fig. 3. An Infinite Tableau Derivation using S′D

(E ′D) Dtx is expanded on Γ if, for some y, x6 .=y, ty ∈ Γ

Similarly to ED, the condition E ′D suffices to ensure model existence. Unlike ED,
however, E ′D is not sufficient to ensure termination. Figure 3 shows an infinite
tableau derivation that becomes possible if we replace ED with E ′D.

Immediately motivated by the the strong model existence theorem is an alter-
native expandedness condition that one could have taken in place of E3:

(E ′3) A formula of the form 〈r〉tx is expanded on a branch Γ if there is some y such
that ty ∈ Γ and rxy is safe for Γ.

Clearly, E ′3 does not suffice to achieve termination of our tableau rules. An applica-
tion of R3 to some diamond formula t will, in general, not make t expanded since
it does not ensure that the newly added accessibility formula is safe. This allows
R3 to be applied to t infinitely often. The following alternative to R3 remedies the
situation:

〈r〉sx [r]t1x . . . [r]tnx

sy, t1y, . . . , tny
y /∈ Γ; [r]tx ∈ Γ implies t ∈ {t1, . . . , tn}

Compared to R3, this rule seems unnecessarily complex, so we prefer E3 over E ′3.

8.3 Local Substitution

While being a realistic choice for the implementation of a decision procedure, the
rule R .= is not very convenient for working with paper and pencil. There, one
would prefer to just extend branches by new formulas, without ever deleting or
modifying formulas that are already there. For this purpose, one can take the

13



Kaminski and Smolka

following nondestructive and local substitution rule in place of R .= :

Rn.
=

s t

txy
s ∈ {x .=y, y .=x}

It is not hard to show that on finite branches, every application of R .= resulting
in a branch Γ can be simulated by finitely many applications of Rn.

=
that lead to a

branch ∆ ⊇ Γ. Hence, every formula that has a closed tableau in a calculus with
R .= also has a closed tableau with Rn.

=
. In other words, replacing R .= with Rn.

=
preserves completeness.

8.4 Nominal versus Prefix Elimination

Our nominal elimination rule is a variant of “nominal substitution” used by van Ei-
jck [25]. Using a suitable representation of variables, nominal elimination can be
done in constant time, independently of the size of the branch to which it is applied.

Bolander and Braüner [6] propose a prefixed substitution-based calculus with a
different substitution rule:

σx, τx ∈ Γ

Γτσ

where σ, τ are prefixes such that σ is introduced earlier on Γ than τ , and Γτσ denotes
the result of substituting σ for τ on Γ. To distinguish it from nominal elimination as
used by our calculus, we refer to this rule as prefix elimination. Prefix elimination
helps to remove redundancy from branches by collapsing several equivalent prefixes
to just one. For instance, consider Γ = {σẋ, σ〈r〉p, τ ẋ, τ〈r〉q}. A naive calculus
that does not use any form of elimination would simply add new formulas to Γ,
eventually yielding some superset of Γ∪ {τ〈r〉p, σ〈r〉q}. While the approach can be
improved to some extent (see [22]), prefix elimination is even more efficient, yielding
the branch {σẋ, σ〈r〉p, σ〈r〉q} if we assume that σ is introduced earlier on Γ than τ .

The advantage of nominal elimination compared to prefix elimination is
that it allows to remove even more redundancy. Consider the prefixed branch
Γ = {σẋ, σẏ, σ〈r〉(@xp), σ〈r〉(@yp)} and its counterpart in our calculus ∆ =
{x .=z, y .=z, 〈r〉(@xp)z, 〈r〉(@yp)z}. While prefix elimination is not applicable to
Γ, our calculus applied to ∆ yields (in two steps) {z .=z, 〈r〉(@zp)z}.

8.5 Semantic Branching

D’Agostino and Mondadori [8,9] argue convincingly that, from the computational
point of view, it is strongly desirable to make different tableau branches semantically
disjoint. This optimization, commonly known as semantic branching [18], can be
incorporated into our calculus by modifying the two branching rules as follows.

Rb
∨̇

(s ∨̇ t)x
sx | ¬̇sx, tx

Rb
D̄

D̄tx

x
.=y | x 6 .=y, ty

y ∈ VΓ

14



Kaminski and Smolka

The two rules are still sound and preserve completeness with the old expandedness
conditions. It is also easy to check that the modifications do not affect termina-
tion. Indeed, our termination proof can also be read as a termination proof for the
modified calculus.

8.6 Complexity and Caching

In [22], we show that pattern-based blocking can significantly reduce the worst-case
size of tableau branches compared to traditional blocking techniques [5,21]. Still,
tableau branches can be exponential in the size of the input formula, meaning that
a naive implementation of the calculus would have to traverse a double-exponential
search space. Caching of satisfiability results for already explored tableau branches
is known to reduce the worst-case asymptotic complexity of tableau-based decision
procedures for basic modal logic to ExpTime [13]. We believe that the same tech-
niques can be extended to deal with nominal equivalence and substitution as used
by our procedure, making it optimal for H(D) over the class of all frames [24,1].

8.7 Related Calculi

Demri [11] presents a sound and complete calculus for a nominal-free logic employ-
ing D as the only modal operator, a strictly less expressive fragment of H(D).

Display calculi for basic hybrid logic with D and inverse modalities are studied
by Demri and Goré [12].

Bolander and Blackburn [5] pose the question whether there exists a simple
extension of existing tableau calculi for hybrid logic that would enable them to
cover the difference modality. Our calculus seems to provide a positive answer to
this question. We believe that our treatment of the difference modality can be
adapted to most, if not all, of the calculi in [6,5,22].

References

[1] Areces, C., P. Blackburn and M. Marx, The computational complexity of hybrid temporal logics, Logic
Journal of the IGPL 8 (2000), pp. 653–679.

[2] Balbiani, Ph. and S. Demri, Prefixed tableaux systems for modal logics with enriched languages, in:
A. L. Ralescu and J. G. Shanahan, editors, Proceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI’97) (1997), pp. 190–195.

[3] Benzmüller, C. E. and L. C. Paulson, Exploring properties of normal multimodal logics in simple
type theory with LEO-II, in: C. E. Benzmüller, C. E. Brown, J. Siekmann and R. Statman, editors,
Festschrift in Honor of Peter B. Andrews on His 70th Birthday, Studies in Logic and the Foundations
of Mathematics, IFCoLog, 2007 To appear.

[4] Blackburn, P., M. de Rijke and Y. Venema, “Modal logic,” Cambridge University Press, 2001.

[5] Bolander, T. and P. Blackburn, Termination for hybrid tableaus, Journal of Logic and Computation
17 (2007), pp. 517–554.

[6] Bolander, T. and T. Braüner, Tableau-based decision procedures for hybrid logic, Journal of Logic and
Computation 16 (2006), pp. 737–763.

[7] Carpenter, B., “Type-Logical Semantics,” Language, Speech, and Communication, The MIT Press,
1997.

[8] D’Agostino, M., Are tableaux an improvement on truth-tables? cut-free proofs and bivalence, Journal
of Logic, Language and Information 1 (1992), pp. 235–252.

15



Kaminski and Smolka

[9] D’Agostino, M. and M. Mondadori, The taming of the cut. classical refutations with analytic cut,
Journal of Logic and Computation 4 (1994), pp. 285–319.

[10] de Rijke, M., The modal logic of inequality, Journal of Symbolic Logic 57 (1992), pp. 566–584.

[11] Demri, S., A simple tableau system for the logic of elsewhere, in: P. Miglioli, U. Moscato, D. Mundici and
M. Ornaghi, editors, Proceedings of the 5th International Workshop on Theorem Proving with Analytic
Tableaux and Related Methods (TABLEAUX’96), Lecture Notes in Artificial Intelligence 1071 (1996),
pp. 177–192.

[12] Demri, S. and R. Goré, Display calcuil for nominal tense logics, Journal of Logic and Computation 12
(2002), pp. 993–1016.

[13] Donini, F. M. and F. Massacci, Exptime tableaux for ALC, Artificial Intelligence 124 (2000), pp. 87–138.

[14] Fitting, M., Modal proof theory, in: P. Blackburn, J. van Benthem and F. Wolter, editors, Handbook of
Modal Logic, Studies in Logic and Practical Reasoning 3, Elsevier, 2007 pp. 85–138.

[15] Gallin, D., “Intensional and Higher-Order Modal Logic. With Applications to Montague Semantics,”
Mathematics Studies 19, North-Holland, 1975.

[16] Gamut, L., “Logic, Language and Meaning, Volume 2, Intensional Logic and Logical Grammar,” The
University of Chicago Press, 1991.

[17] Gargov, G. and V. Goranko, Modal logic with names, Journal of Philosophical Logic 22 (1993), pp. 607–
636.

[18] Giunchiglia, F. and R. Sebastiani, Building decision procedures for modal logics from propositional
decision procedures – the case study of modal K(m), in: M. A. McRobbie and J. K. Slaney, editors,
Proceedings of the 13th International Conference on Automated Deduction (CADE’96), Lecture Notes
in Computer Science 1104 (1996), pp. 583–597.

[19] Goranko, V., Modal definability in enriched languages, Notre Dame Journal of Formal Logic 31 (1990),
pp. 81–105.

[20] Hardt, M. and G. Smolka, Higher-order syntax and saturation algorithms for hybrid logic, Electronic
Notes in Theoretical Computer Science 174 (2007), pp. 15–27.

[21] Horrocks, I., U. Hustadt, U. Sattler and R. Schmidt, Computational modal logic, in: P. Blackburn, J. van
Benthem and F. Wolter, editors, Handbook of Modal Logic, Studies in Logic and Practical Reasoning
3, Elsevier, 2007 pp. 181–245.

[22] Kaminski, M. and G. Smolka, A straightforward saturation-based decision procedure for hybrid logic,
in: International Workshop on Hybrid Logic 2007 (HyLo 2007), 2007.
URL http://www.ps.uni-sb.de/Papers/abstracts/KaminskiSmolka07.pdf

[23] Massacci, F., Strongly analytic tableaux for normal modal logics, in: A. Bundy, editor, Proceedings of
the 12th International Conference on Automated Deduction (CADE’94), Lecture Notes in Artificial
Intelligence 814 (1994), pp. 723–737.

[24] Spaan, E., “Complexity of Modal Logics,” Ph.D. thesis, ILLC, University of Amsterdam (1993).

[25] van Eijck, J., Constraint tableaux for hybrid logics (2002), manuscript.

[26] Venema, Y., Derivation rules as anti-axioms in modal logic, Journal of Symbolic Logic 58 (1993),
pp. 1003–1034.

16

http://www.ps.uni-sb.de/Papers/abstracts/KaminskiSmolka07.pdf

	Introduction
	Hybrid Logic with E and D
	Tableau Rules
	Weak Model Existence
	Strong Model Existence
	Termination
	Restricted Frame Classes
	Discussion
	The Role of Equality
	Alternative Expandedness Conditions
	Local Substitution
	Nominal versus Prefix Elimination
	Semantic Branching
	Complexity and Caching
	Related Calculi

	References

