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Abstract

A sequent calculus for hybrid logics is developed from a calculus for classical predicat logic by

a series of transformations. We formalize the semantic theory of hybrid logic using a sequent

calculus for predicate logic plus axioms. This works, but it is ugly. The unnattractive

features are removed one-by-one, until the final vestiges of the metalanguage can be set

aside to reveal a fully internalized calculus. The techniques are quite general and can be

applied to a wide range of hybrid and modal logics.
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1 Introduction

The classical beauty of Gentzen’s sequent calculus is obvious from first acquaintance.
Each logical operator is precisely characterized by a pair of rules with perfect economy.
The operators appear only in the conclusion of the rules, which are constructed from
a tidy arrangement of subformulas. Every symbol occurs only in the place that best
explains its function; nothing is wasted.

The fit between the geometry of sequent proofs and classical predicate logic is
almost too perfect. When we try to use similar techniques with other logics, it never
quite works. With intuitionistic logic the left-right symmetry is broken; with modal
logics, there are ugly restrictions on the contexts. This paper is a contribution to our
understanding of why this happens.

We propose a means of analyzing the form of a logic by the process of internal-
ization. A calculus is fully internalized if the only symbols that occur in the rules
of the calculus are symbols of the object language. No labels or special positional
operators are allowed—only the geometry of syntactic structure and rules governing
how logical symbols may be added and subtracted. Gentzen’s sequent calculi are all
fully internalized, as are many of the calculi proposed for modern applied logics. Yet
almost all of them require the symmetry-breaking contortions of intuitionistic and
modal logic.
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Contrast the situation in proof theory with that in model theory. There, applied
logics have a natural home in the world of Kripke structures. A semantic theory of
relations can be constructed for almost all known logics, and each one is more-or-less
as good as the others. The theory proposes a network of extra-logical machinery—
accessibility relations and the like—in terms of which the logical operators are trans-
lated. This is an external approach to logic because it uses much beyond the syntax
of the object language.

The passage from external semantic theory to fully internalized calculus is well-
understood, especially among those logicians who can knock up a sequent calculus
for a new modal logic before breakfast. The strategy involves an implicit translation
of everything back into first-order predicate logic. The axioms of the semantic theory
are typically first-order, and so their logical properties can be seen through their
representation in the sequent calculus for classical first-order predicate logic. The
trick is to see how to get the effect of the classical sequent rules using the syntax of
the new logic.

In this paper, we formalize the process of internalization explicitly using, first,
an expression of the external semantic theory in classical predicate logic, and then
a series of transformations taking us to more-and-more internalized calculi, dropping
the metalogical props one by one.

To illustrate the process, we focus on hybrid logics. Hybrid logics lie at the
boundary between predicate logic and propositional modal logic, making them an
especially appropriate focus for proof-theoretic techniques that also cross between
these realms. Recent papers [3, 16, 8, 7] have developed a number of proof systems
for hybrid logics, some of which are fully internalized. And, of course, they all have
clearly formulated Kripke-style semantic theories. They form a perfect case study for
a theory of internalization!1

We begin Section 2 by reviewing the semantic theory of hybrid logics, which we
express as a set of axioms in a formal metalanguage. In Section 3 we introduce a
variant of the classical sequent calculus for predicate logic that is especially good at
handling equality, and add axioms to capture the formal semantics of hybrid logics.
Section 4 regains the Subformula Property, which was lost with the addition of axioms,
by generating rules for the hybrid operators. The Subformula Property is essential
to the process because it allows us to throw away extraneous rules while maintaining
completeness. The resulting system still uses metalogical labels to control the flow of
information in a proof, but these are removed with the use of the hybrid operators in
Section 5.

2 Hybrid Languages and their Formal Semantics

Hybrid logics have a long history and a number of interesting applications. We refer
the reader to [10] for a wealth of information about these logics and an extensive
bibliography. Our present interest in hybrid logics is merely that of providing an
example of a broad class of logics for which the internalization strategy is particularly
appropriate.

1Naturally, the fit is too good to be a matter of chance. My awareness of the process of inter-
nalization came from earlier attempts at providing a sequent calculus for hybrid logics. These are
documented in [3].
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There are two routes to understanding hybrid logics. The first, and most common,
is to think of them as propositional modal logics enriched with various devices from
predicate logic to increase their expressive power. An alternative perspective, adopted
here, sees them as the contextualization of predicate logic.

Let L be the language of predicate logic with individual variables x (= x1, x2, . . .),
property symbols p (= p1, p2, . . .), and (binary) relation symbols r (= r1, r2, . . .).
Closed formulas of L express properties of relational structures via the definition of
truth in a structure. For example, the formula ∀x rxx is satisfied by those structures
having a reflexive r-relation.

Hybrid logic results from the contextualization of these properties to elements of a
structure. We aim to express the contextual properties of an element of the structure
using formulas with an implicit parameter that refers to that element. Any formula
of L with one free variable expresses such a property—we move to hybrid logic by
erasing the free variable and assuming that its reference is supplied as an implicit
parameter.

A property symbol p combines with a variable x to give a formula px. Hide the x
and you get the hybrid formula p, which can be combined with other formulas using
the standard Boolean operators. The formula ∃y (rxy&py) becomes a modal formula
♦rp when the variable x is hidden and assumed to refer to the point of evaluation.
All this is present in ordinary modal logic. We get the specifically hybrid operators
by applying the same idea to a wider class of formulas. For example, when the x of
x = y is hidden we get the nominal y, but now as a formula that can be combined with
other formulas using logical operators. In a context in which y refers to an element
a of a structure, the new hybrid formulas y expresses the property of being identical
to a.

The language H of hybrid logic is defined as follows. The atomic formulas of H
are the individual variables and the property symbols. Complex formulas are built up
using the Boolean operators ∨ and ∼ together with unary modal operators ♦,♦r, and
∃x . Negation duals of the operators, &, �, �r, and ∀x are defined as abbreviations.
The distinction between free and bound variables applies to H just as it does to
L. The semantics of H is a straightforward adaption of the semantics of L. An
interpretation for H is an interpretation for L, namely a relational structure A of
type (p1, p2, . . . , r1, r2, . . .) with a distinguished point, a in the domain |A| of A2.
Given an assignment g of elements of |A| to the variables, we define the relation �
(satisfies) as follows:

A, a, g � x if g(x) = a
A, a, g � p if a ∈ pA

A, a, g � ∼ϕ if not A, a, g � ϕ
A, a, g � (ϕ ∨ ψ) if either A, a, g � ϕ or A, a, g � ψ
A, a, g � ♦ϕ if for some a′ ∈ |A|, A, a′, g � ϕ
A, a, g � ♦rϕ if for some a′ ∈ |A|, 〈a, a′〉 ∈ rA and A, a′, g � ϕ
A, a, g � ∃xϕ if for some a′ ∈ |A|, A, a, g[xa′ ] � ϕ

where, as usual, g[xa′ ](y)=a′ if y = x, and g(y) otherwise.
2A relational structure of type (p1, p2, . . . , r1, r2, . . .) is a set |A| together with a subset pAi of |A|

for each pi and a subset rAi of |A|2 for each ri.
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This is immediately recognizable as containing the Kripke semantics for a language
of modal logic in which p is a propositional variable and ♦ is the S5 modal operator.
♦r is also a normal modal operator, interpreted using the accessibility relation rA.
What has been added is distinctly hybrid: individual variables occurring as formulas
(nominals) and the modal quantifier ∃x

Sequents of the languages mentioned above are expressions of the form Γ −→ ∆, in
which Γ and ∆ are lists of formulas. Such a sequent is valid if every A, a,g satisfying
every formula in Γ also satisfies some formula in ∆.

The hybrid character of the language is further developed with the operators @x

and ↓x. The only syntactic difference between these is that the downarrow operator
↓x binds its variable, whereas the at operator, @x, does not. They are interpreted in
a relational structure as follows:

A, a, g � @xϕ if A, g(x), g � ϕ
A, a, g �↓x ϕ if A, a, g[xa] � ϕ

Clearly, there are many other possibilities for hybrid operators, and yet there is al-
ready a kind of expressive completeness. The above two operators are definable in H
as ♦(x&ϕ) and ∃x (x&ϕ). In fact, every operator definable in the predicate language
L is also definable in H (see [4]).

It may seem a little strange to focus on such a richly expressive language as H.
Much of the research on hybrid languages (for example, [5, 6, 2, 1]) has concentrated
on fragments of H with much less expressive power and correspondingly lower com-
putational complexity. We ensure that the rules developed for H can be applied to
fragments by insisting that they have a subformula property. On the strictest inter-
pretation, a rule is said to have the Subformula Property if every formula occurring
in an application of a rule is a subformula of the conclusion. A complete calculus
in which no rule involves more than one operator and every rule has the Subformula
Property is guaranteed to be modular : select any set of operators and the set of rules
using those operators will be complete for the fragment of the language formed from
those operators. Similar results can be obtained even when the Subformula Prop-
erty is weakened to allow a restricted class of formulas for each rule, so long as the
fragment incudes the formulas in the restricted classes.

We are now ready to formalize the semantic theory of H. Let M (for ‘meta’) be
the language of predicate logic extending L with new atomic formulas of the form
x:ϕ, where ϕ is a formula of H. The free variables of x:ϕ are x together with the
free variables of ϕ. To make it (conceptually) clear that M is a language of predicate
logic, we should have introduced a fresh n + 1-ary relation symbol for each formula
ϕ of H with n free variables. But this would have made the formulas much less clear
(to read) and so we allow what is obviously a merely notational variant.

The semantics of H can be expressed directly in M as follows:

∀z ∀x (z:x≡ x = z)
∀z (z: p≡ pz)
∀z (z:∼ϕ≡∼z:ϕ)
∀z (z: (ϕ ∨ ψ)≡ (z:ϕ ∨ z:ψ))
∀z (z:∃xϕ≡ ∃x z:ϕ)

∀z (z:♦ϕ≡ ∃xx:ϕ)
∀z (z:♦rϕ≡ ∃x (rzx& x:ϕ))
∀z ∀x (z: @xϕ≡ x:ϕ)
∀z (z: ↓x ϕ≡ z:ϕ[xz ])
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Similar sentences could be produced for any other first-order definable hybrid opera-
tor. Let Θ be the above set of sentences of M . A sequent Γ −→ ∆ is Θ-valid if for
every model A of Θ and every assignment g, if A, g satisfies all the formulas in Γ,
then it also satisfies some of the formulas in ∆. From such a characterization of the
semantics of H, we get the following lemma. For each list Γ of formulas of H, let u: Γ
be the list of formulas u:ϕ, for each ϕ in Γ.

Lemma 1 A sequent Γ −→ ∆ of H is valid if and only if u: Γ −→ u: ∆ is Θ-valid.

Proof It is enough to observe that there is a one-one correspondence between models
B of Θ and relational structures A for H, such that |A|=|B| and for every assignment
g, element a of the domain, formula ϕ of H, and variable x not in ϕ,

A, a, g � ϕ if and only if B, g[xa] � x:ϕ

For any Θ-model B, the corresponding structure A is just the reduct to properties
p1, p2, . . . and relations r1, r2, . . .. The correspondence is one-one because the theory
Θ fixes the interpretation of all of the new relation symbols.

3 Sequent Calculus for Θ-validity

Valid sequents in M can be generated in a uniform way using the sequent calculus
SM shown in Figure 1. Here ϕ and ψ range over formulas of M and Γ and ∆ range
over lists of formulas of M . We write Γ ≈ ∆ to mean that Γ and ∆ contain the same
set of formulas. For any expression σ, we write σ[xy ] for the result of replacing all free
occurrences of x in σ by y.

The rules are written in horizontal notation, with premises listed to the left of ‘⇒’
and conclusion to the right3.

For proof-theoretic purposes it is useful to make a global decision about which
variables can occur free in a sequent. Let u1, u2, . . . be a distinguished class of indi-
vidual variables, called parameters. We restrict our attention to sequents whose free
variables are all parameters and whose bound variables are not parameters, so that
awkward clashes of variables can be avoided. We use u, v, w to range over parameters
and x, y, z to range over the more inclusive class of individual variables.
The sequent to the right of the arrow ⇒ is the conclusion of the rule; those on
the left are its premises. A sequent Γ −→ ∆ is a theorem of a set of rules, such
as SM , if it is generated by them. In other words, a sequent is a theorem if it is
the conclusion of a rule whose premises (if it has premises) are also theorems. The
generation tree for a theorem is called a proof 4. The calculus SM has the celebrated
Subformula Property : every formula occurring in a proof of Γ −→ ∆ is a subformula
of a formula in Γ or ∆. The rule of Weakening (W),

Γ −→ ∆ ⇒ Γ′,Γ −→ ∆,∆′

3This is equivalent to vertical notation, often seen in textbooks, in which premises and conclusion
are separated by a deduction line of the kind used in proofs. I prefer the horizontal notation because
it is less cumbersome and makes a clearer distinction between the rules of a system and the proofs
produced when the rules are applied.

4Note that when we draw a proof as a tree, any application of S will not be shown unless it is
especially significant.

5



Structural Rules

I ⇒ ϕ,Γ −→ ∆, ϕ.

S Γ −→ ∆ ⇒ Γ′ −→ ∆′ if Γ ≈ Γ′ and ∆ ≈ ∆′.
Logical Rules

∼l Γ −→ ∆, ϕ ⇒ ∼ϕ,Γ −→ ∆.

∼r ϕ,Γ −→ ∆ ⇒ Γ −→ ∆,∼ϕ.

∨l ϕ,Γ −→ ∆; ψ,Γ −→ ∆ ⇒ (ϕ ∨ ψ),Γ −→ ∆

∨r Γ −→ ∆, ϕ, ψ ⇒ Γ −→ ∆, (ϕ ∨ ψ)

∃l ϕ[xu],Γ −→ ∆ ⇒ ∃xϕ,Γ −→ ∆ if u does not occur in ϕ,Γ,∆.

∃r Γ −→ ∆, ϕ[xu] ⇒ Γ −→ ∆,∃xϕ
=l1 u = v,Γ[wu ] −→ ∆[wu ] ⇒ u = v,Γ[wv ] −→ ∆[wv ].

=l2 u = v,Γ[wv ] −→ ∆[wv ] ⇒ u = v,Γ[wu ] −→ ∆[wu ].

=r ⇒ Γ −→ ∆, u = u

Figure 1: The sequent calculus SM

is admissible, which means that its addition to the set of rules will not allow us to
prove more theorems.
Of the rules of SM , only the Barwise equality rules, =l1 and =l2, may be unfamiliar5.
Together they allow the replacement of any number of occurrences of u by v and v by
u in a sequent containing u = v on the left side. An advantage of the Barwise rules
is the straightforward way in which the following result may be stated:

Theorem 2 The rule of Cut (C)

Γ −→ ∆, ϕ; ϕ,Γ′ −→ ∆′ ⇒ Γ,Γ′ −→ ∆,∆′

is admissible in SM .

Proof The theorem is proved by the method of cut-elimination: we show that every
application of C—called a cut—can be pushed up the proof tree until it falls off the
leaves. Technically, this is done by assigning a number to each cut—its cut rank—and
transforming the proof so as to reduce distance between the cuts of maximal rank
and the leaves. Cuts at the leaves are shown to be replaceable by axioms (I or =r,
in this case). The transformations are of two kinds. In the primary case, the cut
formula is assumed to be the principal formula of both rules immediate above the
cut. Typically, the transformation replaces the cut with one or more cuts of lower
rank. For example, if the cut formula is ∼ϕ we have

π1

ϕ,Γ −→ ∆
∼r

Γ −→ ∆,∼ϕ

π2

Γ′ −→ ∆′, ϕ
∼l

∼ϕ,Γ′ −→ ∆′
C

Γ,Γ′ −→ ∆,∆′

;

π2

Γ′ −→ ∆′, ϕ
π1

ϕ,Γ −→ ∆
C

Γ′,Γ −→ ∆′,∆

5They were used by Jon Barwise in some early work on infinitary logic.
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The cut rank of ϕ is less than that of ∼ϕ, so this is an improvement. The second
kind of transformation occurs when the cut formula is not the principal formula of
the final rule of one of the two branches. In this case, we must show how the cut can
be moved up that branch, closer to the leaf. For example,

π1

ϕ,Γ −→ ∆,∃xψ
∼r

Γ −→ ∆,∼ϕ,∃xψ π2

∃xψ,Γ′ −→ ∆′
C

Γ,Γ′ −→ ∆,∼ϕ,∆′

;

π1

ϕ,Γ −→ ∆,∃xψ
π2

∃xψ,Γ′ −→ ∆′
C

ϕ,Γ,Γ′ −→ ∆,∆′

∼r

Γ,Γ′ −→ ∆,∆′,∼ϕ

For the system without the equality rules, the transformations are all standard (see,
for example, [15]). The treatment of the equality rules deserves some comment. In
the primary case, there is no difficulty at all in removing cuts whose cut formula is
an equation:

=r

Γ −→ ∆, u = u

π
u = u,Γ′[wu ] −→ ∆′[wu ]

=l1

u = u,Γ′[wu ] −→ ∆′[wu ]
C

Γ,Γ′ −→ ∆,∆′

;

=r

Γ −→ ∆, u = u
π

u = u,Γ′[wu ] −→ ∆′[wu ]
C

Γ,Γ′ −→ ∆,∆′

But the secondary case is a little more involved:
π1

u = v,Γ[wu ] −→ ∆[wu ], ϕ[wu ]
=l1

u = v,Γ[wv ] −→ ∆[wv ], ϕ[wv ]
π2

ϕ[wv ],Γ′ −→ ∆′
C

u = v,Γ[wv ],Γ′ −→ ∆[wv ],∆′

;

π∗1 [vu]
u = u,Γ[wu ][vu] −→ ∆[wu ][vu], ϕ[wu ][vu]

π∗2 [vu]
ϕ[wv ][vu],Γ′[vu] −→ ∆′[vu]

C
u = u,Γ[wu ][vu],Γ′[vu] −→ ∆[wu ][vu],∆′[vu]

W
u = v, u = u,Γ[wu ][vu],Γ′[vu] −→ ∆[wu ][vu],∆′[vu]

=l2

u = v, u = v,Γ[wu ],Γ′ −→ ∆[wu ],∆′

The problem here is that the cut formula ϕ[wv ] becomes ϕ[wu ] on the left side, but
stays as ϕ[wv ] on the right side. The solution is to replace v by u throughout the two
branches, after first changing any parameters introduced by the restricted quantifier
rule ∃l6. This does not increase the length of the branches. The cut can be moved
up the left branch because ϕ[wu ][vu] is identical to ϕ[wv ][vu]. After the new cut, the vs
can be put back in their proper places using =l2

7.
6We write π∗i for the result of renaming the parameters in πi that are introduced by a restricted

rule, such as ∃l.
7In the manuscript, [14], cut-elimination is proved in a less direct manner, using redundant

equality axioms in addition to the rules. In effect, the substitution we perform above is there
postponed until the elimination algorithm reaches the leaves of the tree.
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Theorem 3 A sequent of M is valid if and only if it is a theorem of SM .

Proof To demonstrate soundness (the ‘if’ direction), we need only observe that if
the premises of an SM rule are valid, then so is the conclusion. Completeness (the
‘only if’ direction) follows from Theorem 2 and the completeness of the predicate
calculus with identity, given the derivability of standard sequent axioms of predicate
logic8. Since the only non-standard rules are the equality rules, we need only observe
that reflexivity, symmetry, and transitivity are easily derived:

=r

−→ u = u

=r

u = v −→ u = u
=l2

u = v −→ v = u

=r

u = v, v = w −→ u = u
=l2

u = v, v = w −→ u = v
=l2

u = v, v = w −→ u = w

The Subformula Property allows us to extend this result to all fragments of M ob-
tained by removing logical operators.

Corollary 4 For any fragment M ′ of M that is closed under subformulas—i.e., all
subformulas of formulas in M ′ are also in M ′—let SM ′ be the set of rules of SM that
involve operators occurring in M ′, together with the structural rules. Then a sequent
of M ′ is valid if and only if it is a theorem of SM ′.

Proof Soundness (the ‘if’ direction) follows from the soundness of SM . For the
converse, suppose that Γ −→ ∆ is a valid sequent of M ′. Then, by Theorem 3 it is
a theorem of SM . By the Subformula Property, its proof contains only formulas in
M ′. The rules used in the proof are therefore in SM ′, and so Γ −→ ∆ is a theorem
of SM ′.

These results are easily strengthened to deal with Θ-validity.

Corollary 5 A sequent Γ −→ ∆ of M is Θ-valid if and only if there are formulas
ϕ1, . . . , ϕn in Θ such that ϕ1, . . . , ϕn,Γ −→ ∆ is a theorem of SM .

Proof By the compactness of predicate logic, and Theorem 3.

The simplest way of extending SM to a calculus for Θ-validity, is to add a new axiom
Γ ⇒ ∆, ϕ for each sentence ϕ in Θ. Call the set of these new axioms AΘ.

Theorem 6 A sequent of M is a theorem of S(M+AΘ+C) if and only if it is Θ-valid.

Proof The new rules are obviously Θ-valid, and all the old rules preserve validity
and hence also Θ-validity. So, every theorem of S(M+AΘ+C) is Θ-valid. Conversely,
suppose that Γ −→ ∆ is Θ-valid. By Corollary 5, there are formulas ϕ1, . . . , ϕn in
Θ, such that ϕ1, . . . , ϕn,Γ −→ ∆ is a theorem of SM . But −→ ϕi is in AΘ for each
i, and so by n applications of the C rule, we can show that Γ −→ ∆ is a theorem of
S(M+AΘ+C).

Unfortunately, the C rules cannot be entirely eliminated from proofs in S(M+AΘ+C),
which lacks the Subformula Property. This limits the theoretical utility of the calculus
greatly.
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Derived Logical Rules

&l ϕ,ψ,Γ −→ ∆ ⇒ (ϕ& ψ),Γ −→ ∆.

&r Γ −→ ∆, ϕ; Γ −→ ∆, ψ ⇒ Γ −→ ∆, (ϕ& ψ)

⊃l Γ −→ ∆, ϕ; ψ,Γ −→ ∆ ⇒ (ϕ⊃ ψ),Γ −→ ∆

⊃r ϕ,Γ −→ ∆, ψ ⇒ Γ −→ ∆, (ϕ⊃ ψ).

≡l ϕ,ψ,Γ −→ ∆; Γ −→ ∆, ϕ, ψ ⇒ (ϕ≡ ψ),Γ −→ ∆

≡r ϕ,Γ −→ ∆, ψ; ψ,Γ −→ ∆, ϕ ⇒ Γ −→ ∆, (ϕ≡ ψ)

∀l ϕ[xu],Γ −→ ∆ ⇒ ∀xϕ,Γ −→ ∆

∀r Γ −→ ∆, ϕ[xu] ⇒ Γ −→ ∆,∀xϕ if u does not occur in ϕ,Γ,∆.

Figure 2: Derived rules of SM

Before addressing this problem, let us just note that with standard abbreviations,
the rules listed in Figure 2 can all be derived in SM

4 Regaining the Subformula Property

The barrier to the elimination of C from S(M+AΘ+C), are cuts involving the formulas
of Θ. For example, the following cut cannot be eliminated. Let π be the proof

I
u: ∃x♦rx, ∃xu:♦rx, v:♦ru, u:♦rv −→ u: ∃x♦rx

I
v:♦ru, u:♦rv −→ u: ∃x♦rx, u: ∃x♦rx, u:♦rv

∃r
v:♦ru, u:♦rv −→ u: ∃x♦rx, u: ∃x♦rx, ∃xu:♦rx

≡l

(u: ∃x♦rx≡ ∃xu:♦rx), v:♦ru, u:♦rv −→ u: ∃x♦rx
∀l

∀z (z: ∃x♦rx≡ ∃x z:♦rx), v:♦ru, u:♦rv −→ u: ∃x♦rx

then

Θ
−→ ∀z (z: ∃x♦rx≡ ∃x z:♦rx)

π
&l

∀z (z: ∃x♦rx≡ ∃x z:♦rx), (v:♦ru& u:♦rv) −→ u: ∃x♦rx
∃l

∀z (z: ∃x♦rx≡ ∃x z:♦rx), ∃y (y:♦ru& u:♦ry) −→ u: ∃x♦rx
∀l

∀z (z: ∃x♦rx≡ ∃x z:♦rx), ∀x ∃y (y:♦rx& x:♦ry) −→ u: ∃x♦rx
∀r

∀z (z: ∃x♦rx≡ ∃x z:♦rx), ∀x ∃y (y:♦rx& x:♦ry) −→ ∀y y: ∃x♦rx
C

∀x ∃y (y:♦rx& x:♦ry) −→ ∀y y: ∃x♦rx

8Theorem 2 is needed for logical closure. For example, we need to know that if (ϕ⊃ ψ), ϕ −→ ψ
is an axiom (MP) and −→ ϕ and −→ (ϕ⊃ ψ) are theorems then so is −→ ψ.
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The cut can be pushed up the tree as far as the application of ∀l, but no further:

Θ
−→ ∀z (z: ∃x♦rx≡ ∃x z:♦rx) π

C
v:♦ru, u:♦rv −→ u: ∃x♦rx

&l

(v:♦ru& u:♦rv) −→ u: ∃x♦rx
∃l

∃y (y:♦ru& u:♦ry) −→ u: ∃x♦rx
∀l

∀x ∃y (y:♦rx& x:♦ry) −→ u: ∃x♦rx
∀r

∀x ∃y (y:♦rx& x:♦ry) −→ ∀y y: ∃x♦rx

More generally, we have the following result:

Lemma 7 Any proof in S(M+AΘ+C) can be transformed into a proof in which all
cuts have the form

Θ
Γ −→ ∆, ϕ

π
ϕ,Γ′ −→ ∆′

C
Γ,Γ′ −→ ∆,∆′

where ϕ is a formula of Θ and is the principal formula of the final rule of π.

Proof This is a standard result for adding axioms to a system of rules from which
C is eliminated ([15]). The ‘axiom cuts’, as they are called, are the only cuts whose
rank cannot be reduced by the standard elimination algorithm.

To go further, we need to replace the axioms from Θ with rules that do the same work.
In the above example, we need a rule for proving sequents of the form Γ −→ ∆, u:∃xϕ.
Working backwards, we can find out what is required:

Θ
−→ ∀z (z:∃xϕ≡ ∃x z:ϕ)

I
u:∃xϕ,∃xu:ϕ,Γ −→ ∆, u:∃xϕ

Γ −→ ∆, u:∃xϕ, u:∃xϕ, u:ϕ[xv ]
∃r

Γ −→ ∆, u:∃xϕ, u:∃xϕ,∃xu:ϕ
≡l

(u:∃xϕ≡ ∃xu:ϕ),Γ −→ ∆, u:∃xϕ
∀l

∀z (z:∃xϕ≡ ∃x z:ϕ),Γ −→ ∆, u:∃xϕ
C

Γ −→ ∆, u:∃xϕ

The derivation suggests the rule

Γ −→ ∆, u:∃xϕ, u:∃xϕ, u:ϕ[xv ] ⇒ Γ −→ ∆, u:∃xϕ

But we can do some cleaning up. The rule is derivable from the simpler rule

Γ −→ ∆, u:ϕ[xv ] ⇒ Γ −→ ∆, u:∃xϕ

10



which we call :∃r. Given this rule, our example proof can be rewritten without the
cut, as follows:

I
v:♦ru, u:♦rv −→ u:♦rv

:∃r
v:♦ru, u:♦rv −→ u:∃x♦rx

&l

(v:♦ru& u:♦rv) −→ u:∃x♦rx
∃l

∃y (y:♦ru& u:♦ry) −→ u:∃x♦rx
∀l

∀x∃y (y:♦rx& x:♦ry) −→ u:∃x♦rx
∀r

∀x∃y (y:♦rx& x:♦ry) −→ ∀y y:∃x♦rx
Using the same method, we get a rule for : ∃ on the left:

:∃l u:ϕ[xv ],Γ −→ ∆ ⇒ u:∃xϕ,Γ −→ ∆

with the restriction that v does not occur in ϕ,Γ,∆. Together, these two rules will
replace the need for the axiom from Θ, with the advantage that they obey a subformula
property. (This will be proved later, in Theorem 10.)

We can find similar rules for all the hybrid operators. They are listed in Figure 3.
Some of the rules have been split into a Hybrid Rule and an Interface Rule. For
example, an analysis of proofs of ♦rϕ on the left gives us the rule

u:♦rϕ, ruv, v:ϕ,Γ −→ ∆ ⇒ u:♦rϕ,Γ −→ ∆

We split this into the two rules

:♦rl u:♦rv, v:ϕ,Γ −→ ∆ ⇒ u:♦rϕ,Γ −→ ∆ Hybrid

A2l ruv,Γ −→ ∆ ⇒ u:♦rv,Γ −→ ∆ Interface

from which the general rule can be derived. The advantage of this split is that the
Hybrid Rule uses only formulas of the form u:ϕ. Formulas such as ruv that are not of
this form are restricted to applications of the Interface Rules. This gives us a useful
tightening of the Subformula Property that we will make good use of shortly.

Let :H be the set of Hybrid Rules, and let :H/M be the set of interface rules. The
above discussion motivates the following series of results:

Lemma 8 A sequent of M is a theorem of S(M+AΘ+C) if and only if it is a theorem
of S(M+:H+:H/M+C).

Proof We need only show that each of the rules in :H and :H/M is derivable in
S(M+AΘ+C), and that each of the axioms of AΘ is derivable in S(M+:H+:H/M+C).
We have already given an example of a derivation of the first kind; our method of
discovering the rules is to construct such a derivation. Here is an example of the
derivation of an axiom from a rule. Let π be

I
ruv, v:ϕ,Γ −→ ∆, ruv

A2l

u:♦rv, v:ϕ,Γ −→ ∆, ruv
I

u:♦rv, v:ϕ,Γ −→ ∆, v:ϕ
&r

u:♦rv, v:ϕ,Γ −→ ∆, (ruv & v:ϕ)
∃r

u:♦rv, v:ϕ,Γ −→ ∆, ∃x (rux& x:ϕ)

11



Hybrid Logical Rules :H

: l1 u: v,Γ[wu ] −→ ∆[wu ] ⇒ u: v,Γ[wv ] −→ ∆[wv ].

: l2 u: v,Γ[wv ] −→ ∆[wv ] ⇒ u: v,Γ[wu ] −→ ∆[wu ].

: r ⇒ Γ −→ ∆, u:u

:∼l Γ −→ ∆, u:ϕ ⇒ u:∼ϕ,Γ −→ ∆

:∼r u:ϕ,Γ −→ ∆ ⇒ Γ −→ ∆, u:∼ϕ
:∨l u:ϕ,Γ −→ ∆; u:ψ,Γ −→ ∆ ⇒ u: (ϕ ∨ ψ),Γ −→ ∆

:∨r Γ −→ ∆, u:ϕ, u:ψ ⇒ Γ −→ ∆, u: (ϕ ∨ ψ)

:∃l u:ϕ[xv ],Γ −→ ∆ ⇒ u:∃xϕ,Γ −→ ∆ if v does not occur in ϕ,Γ,∆.

:∃r Γ −→ ∆, u:ϕ[xv ] ⇒ Γ −→ ∆, u:∃xϕ
:♦l v:ϕ,Γ −→ ∆ ⇒ u:♦ϕ,Γ −→ ∆ if v does not occur in ϕ,Γ,∆.

:♦r Γ −→ ∆, v:ϕ ⇒ Γ −→ ∆, u:♦ϕ

:♦rl u:♦rv, v:ϕ,Γ −→ ∆ ⇒ u:♦rϕ,Γ −→ ∆ if v does not occur in ϕ,Γ,∆.

:♦rr Γ −→ ∆, v:ϕ; Γ −→ ∆, u:♦rv ⇒ Γ −→ ∆, u:♦rϕ

: @l v:ϕ,Γ −→ ∆ ⇒ u: @vϕ,Γ −→ ∆

: @r Γ −→ ∆, v:ϕ ⇒ Γ −→ ∆, u: @vϕ

: ↓l u:ϕ[xu],Γ −→ ∆ ⇒ u: ↓x ϕ,Γ −→ ∆

: ↓r Γ −→ ∆, u:ϕ[xu] ⇒ Γ −→ ∆, u: ↓x ϕ
Interface Rules :H/M

A1l pu,Γ −→ ∆ ⇒ u: p,Γ −→ ∆

A1r Γ −→ ∆, pu ⇒ Γ −→ ∆, u: p

A2l ruv,Γ −→ ∆ ⇒ u:♦rv,Γ −→ ∆

A2r Γ −→ ∆, ruv ⇒ Γ −→ ∆, u:♦rv

Figure 3: The Hybrid Logical Rules and Interface Rules

Then

π
♦rl

u:♦rϕ,Γ −→ ∆, ∃x (rux& x:ϕ)

I
ruv, v:ϕ,Γ −→ ∆, ruv

A2r

ruv, v:ϕ,Γ −→ ∆, u:♦rv
I

ruv, v:ϕ,Γ −→ ∆, v:ϕ
♦rr

ruv, v:ϕ,Γ −→ ∆, u:♦rϕ
&l

(ruv & v:ϕ),Γ −→ ∆, u:♦rϕ
∃l

∃x (rux& x:ϕ),Γ −→ ∆, u:♦rϕ
≡r

Γ −→ ∆, (u:♦rϕ≡ ∃x (rux& x:ϕ))
∀r

Γ −→ ∆, ∀z (z:♦rϕ≡ ∃x (rzx& x:ϕ))

12



The other derivations are all similarly straightforward.

Lemma 9 C is admissible in S(M+:H+:H/M).

Proof To eliminate cuts from proofs in S(M+:H+:H/M+C) we follow the method
described in the proof of Theorem 2. We have to show that (1) cuts can be pushed
through the new rules when the cut formula is not principal, and (2) that cut rank
can be decreased when the cut formula is the principal formula of applications of the
new rules. Most of the new rules do not alter the non-principal formulas, and so
(1) is straightforward—we omit the details. The only problematic case is that of the
Hybrid rules : l1 and : l2, but they are treated in the same way as we treated the =l

rules in the proof of Theorem 2.
Again, for most of the rules the transformations required for (2) are exactly anal-

ogous to those of their cousins in M . For example, :∨l and :∨r are transformed in
the same way as ∨l and ∨r. The transformations required for the Interface Rules are
straightforward:

π1

Γ −→ ∆, pu
A1r

Γ −→ ∆, u: p

π2

pu,Γ′ −→ ∆′

A1l

u: p,Γ′ −→ ∆′

C
Γ,Γ′ −→ ∆,∆′

;

π1

Γ −→ ∆, pu
π2

pu,Γ′ −→ ∆′

C
Γ,Γ′ −→ ∆,∆′

The A2 rules are dealt with similarly. The only rules that deserve comment are those
for the modal (♦, ♦r) and hybrid (@, ↓) operators, so we finish the proof with these.
First the modals:

π1

Γ −→ ∆, v:ϕ
♦r

Γ −→ ∆, u:♦ϕ

π2

w:ϕ,Γ′ −→ ∆′

♦l

u:♦ϕ,Γ′ −→ ∆′

C
Γ,Γ′ −→ ∆,∆′

;

π1

Γ −→ ∆, v:ϕ
π∗2 [wv ]

v:ϕ,Γ′ −→ ∆′

C
Γ,Γ′ −→ ∆,∆′

(As before, π∗i is the result of renaming the parameters in πi that are introduced by
a restricted rule, such as ∃l. Note that Γ′[wv ] = Γ′ and ∆′[wv ] = ∆′ because w cannot
occur in Γ′,∆′.)

π′1
Γ −→ ∆, u:♦rv

π′′1
Γ −→ ∆, v:ϕ

♦rr
Γ −→ ∆, u:♦rϕ

π2

u:♦rw,w:ϕ,Γ′ −→ ∆′

♦rl
u:♦rϕ,Γ

′ −→ ∆′

C
Γ,Γ′ −→ ∆,∆′

;
π′1

Γ −→ ∆, u:♦rv

π′′1
Γ −→ ∆, v:ϕ

π∗2 [wv ]
u:♦rv, v:ϕ,Γ′ −→ ∆′

C
u:♦rv,Γ,Γ

′ −→ ∆,∆′

C
Γ,Γ′ −→ ∆,∆′

Now for the hybrid operators:
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π1

Γ −→ ∆, v:ϕ
@r

Γ −→ ∆, u: @vϕ

π2

v:ϕ,Γ′ −→ ∆′

@l

u: @vϕ,Γ
′∆′ −→

C
Γ,Γ′ −→ ∆,∆′

;

π1

Γ −→ ∆, v:ϕ
π2

v:ϕ,Γ′ −→ ∆′

C
Γ,Γ′ −→ ∆,∆′

π1

Γ −→ ∆, u:ϕ
↓ r

Γ −→ ∆, u: ↓x ϕ

π2

u:ϕ,Γ′ −→ ∆′

↓ l

u: ↓x ϕ,Γ′∆′ −→
C

Γ,Γ′ −→ ∆,∆′

;

π1

Γ −→ ∆, u:ϕ
π2

u:ϕ,Γ′ −→ ∆′

C
Γ,Γ′ −→ ∆,∆′

Theorem 10 A sequent of M is Θ-valid if and only if it is a theorem of S(M+:H +
:H/M).

Proof Soundness (the ‘if’ direction) follows from the fact that each of the rules
in :H and :H/M is derivable in S(M+AΘ+C), which is sound by Theorem 6. For
completeness, suppose that Γ −→ ∆ is Θ-valid. By Theorem 6, there is a proof of this
sequent in S(M+AΘ+C), which can be converted into a proof in S(M+:H+:H/M+C)
by Lemma 8, and then into a proof without C, by Lemma 9.

The calculus S(M+:H+:H/M) gives a complete characterization of the valid sequents
of M and comes very close to having the Subformula Property. The rules of SM
have the Subformula Property, as do those of :H, with a suitable definition of the
subformulas of u:ϕ. We say that v:ψ is a subformula of u:ϕ if ψ is the result of
replacing zero or more occurrences of the parameters of a (genuine) subformula of ϕ.
The Interface Rules lack the Subformula Property, but this is not too serious; we can
replace them with axioms that have it (see Figure 4).

Interface Axioms A:H/M

A∗1l ⇒ u: p,Γ −→ ∆, pu

A∗1r ⇒ pu,Γ −→ ∆, u: p

A∗2l ⇒ u:♦rv,Γ −→ ∆, ruv

A∗2r ⇒ ruv,Γ −→ ∆, u:♦rv

Figure 4: Interface Axioms A:H/M

Corollary 11 A sequent of M is Θ-valid if and only if it is a theorem of S(M+:H
+ A:H/M).

Proof From Theorem 10. We have to show that applications of the Interface Rules
can be replaced by applications of the Interface Axioms. This is simply a matter of
showing that the Interface Rules commute with all the other rules until they get to
the leaves of the proof tree. All leaves end in axioms: I,=r,: r, and the Interface
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Axioms. In each case, the Interface Rule can be eliminated using another axiom. For
example,

I
pu,Γ −→ ∆, pu

A1l
u: p,Γ −→ ∆, pu

; A∗1l

u: p,Γ −→ ∆, pu

A∗2l

u:♦rv,Γ −→ ∆, ruv
A2r

u:♦rv,Γ −→ ∆, u:♦rv
; I

u:♦rv,Γ −→ ∆, u:♦rv

The system S(M+:H+A:H/M) has the Subformula Property and so we have reached
the goal of this section.

5 Internalization and Rules For All

Now that Θ-validity in M has been captured with a respectable sequent calculus, we
can use Lemma 1 to provide a calculus for validity in H. Let S:H be the set consisting
of the Structural Rules, I and S, together with the Hybrid Rules :H.

Theorem 12 Suppose that u does not occur in Γ,∆. The sequent Γ −→ ∆ of H is
valid if and only if u: Γ −→ u: ∆ is a theorem of S:H. Moreover, the proof uses only
the rules for the operators occurring in Γ,∆.

Proof By Corollary 11, the calculus S(M+S:H+A:H/M) is sufficient, but this cal-
culus enjoys the Subformula Property, and so any proof of a sequent of the form
u: Γ −→ u: ∆ uses only the rules of S:H.

This is a great improvement on S(M+AΘ+C), but still slightly unsatisfactory because
the proofs of S:H are not fully internalized. The formulas occurring in the proof
are not formulas of H; they are all of the form u:ϕ, which belongs to the formal
metalanguage M .

To push internalization as far as possible, we will reformulate the rules of S:H
using the hybrid operator @. This gives us the system S@H, shown in Figure 5.
Without @ we would have to look much more closely at the structure of proofs to
make any further progress toward internalization.
S@H is fully internalized: the only formulas occurring in proofs are formulas of
H. What’s more, it has the Subformula Property, if we reinterpret the definition
of subformula appropriately. The only remaining drawback is that the calculus only
applies to a fragment of the language: the formulas of the form @uϕ. This is sufficient
for the purpose of characterizing validity, because every sequent Γ −→ ∆ is equivalent
to a sequent in this fragment, namely, @uΓ −→ @u∆. Yet the absence of rules for
dealing with sequents without @ is regrettable, and unnecessary. In the final tuning
of our proof-theoretic apparatus, we aim for a more egalitarian logic in which there
are ‘Rules for All’.

Nominals—individual variables occurring as formulas—play an essential part in
liberating the calculus from @-prefixed formulas. A single nominal parameter u on
the left side of a sequent is enough to anchor all non-@-prefixed formulas to the same
element and so removes“‘ the need for them to share a prefix. To shift between @-
prefixed formulas and free nominals we need the Nominal Rules N , shown in Figure 6.
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Internalized Hybrid Logical Rules @H

@l1 @uv,Γ[wu ] −→ ∆[wu ] ⇒ @uv,Γ[wv ] −→ ∆[wv ].

@l2 @uv,Γ[wv ] −→ ∆[wv ] ⇒ @uv,Γ[wu ] −→ ∆[wu ].

@r ⇒ Γ −→ ∆,@uu

@∼l Γ −→ ∆,@uϕ ⇒ @u∼ϕ,Γ −→ ∆

@∼r @uϕ,Γ −→ ∆ ⇒ Γ −→ ∆,@u∼ϕ
@∨l @uϕ,Γ −→ ∆; @uψ,Γ −→ ∆ ⇒ @u(ϕ ∨ ψ),Γ −→ ∆

@∨r Γ −→ ∆,@uϕ,@uψ ⇒ Γ −→ ∆,@u(ϕ ∨ ψ)

@∃l @uϕ[xv ],Γ −→ ∆ ⇒ @u∃xϕ,Γ −→ ∆ if v does not occur in ϕ,Γ,∆.

@∃r Γ −→ ∆,@uϕ[xv ] ⇒ Γ −→ ∆,@u∃xϕ
@♦l @vϕ,Γ −→ ∆ ⇒ @u♦ϕ,Γ −→ ∆ if v does not occur in ϕ,Γ,∆.

@♦r Γ −→ ∆,@vϕ ⇒ Γ −→ ∆,@u♦ϕ

@♦rl @u♦rv,@vϕ,Γ −→ ∆ ⇒ @u♦rϕ,Γ −→ ∆ if v does not occur in ϕ,Γ,∆.

@♦rr Γ −→ ∆,@vϕ; Γ −→ ∆,@u♦rv ⇒ Γ −→ ∆,@u♦rϕ

@@l @vϕ,Γ −→ ∆ ⇒ @u@vϕ,Γ −→ ∆

@@r Γ −→ ∆,@vϕ ⇒ Γ −→ ∆,@u@vϕ

@ ↓l @uϕ[xu],Γ −→ ∆ ⇒ @u ↓x ϕ,Γ −→ ∆

@ ↓r Γ −→ ∆,@uϕ[xu] ⇒ Γ −→ ∆,@u ↓x ϕ

Figure 5: Internalized Hybrid Logical Rules @H

Lemma 13 A sequent of H is valid if and only if it is a theorem of S(@H+N).

Proof First note that a sequent Γ −→ ∆ of H is valid if and only if @uΓ −→ @u∆ is
a theorem of S@H for u not in Γ,∆. This follows from Theorem 12 together with the
observation that the rules, and hence the proofs, in these two systems are isomorphic.
We can convert one to the other simply by replacing u: by @u and vice versa. But now
suppose that Γ −→ ∆ is valid and so @uΓ −→ @u∆ is a theorem of S@H (for u not
in Γ,∆). Weakening, we get u,@uΓ −→ @u∆, from which we can derive u,Γ −→ ∆
using multiple applications of ∧@l and ∧@r. Finally, we get Γ −→ ∆ using name.
For the converse, we need only check that each rule of N is sound.

Now, with the Nominal Rules in place, the rules of @H can be converted to use the
nominal-based method of context sharing. We convert each rule of @H of the form

@uΓ1,Γ −→ ∆,@u∆1 ⇒ @uΓ2,Γ′ −→ ∆′,@u∆2

to the rule
u,Γ1,Γ −→ ∆,∆1 ⇒ u,Γ2,Γ′ −→ ∆′,∆2

If u does not occur in (the general statement of) this rule except in the place we have
shown, we can go one step further and convert the rule to

Γ1,Γ −→ ∆,∆1 ⇒ Γ2,Γ′ −→ ∆′,∆2
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Nominal Rules N
∨@l u, ϕ,Γ −→ ∆ ⇒ u,@uϕ,Γ −→ ∆
∨@r u,Γ −→ ∆, ϕ ⇒ u,Γ −→ ∆,@uϕ
∧@l u,@uϕ,Γ −→ ∆ ⇒ u, ϕ,Γ −→ ∆
∧@r u,Γ −→ ∆,@uϕ ⇒ u,Γ −→ ∆, ϕ

name u,Γ −→ ∆ ⇒ Γ −→ ∆ if u does not occur in Γ,∆.

term u,Γ −→ ∆ ⇒ Γ −→ ∆ if all formulas in Γ,∆ are @-prefixed.

Figure 6: Nominal Rules N

(Here the shared element of the non-@-prefixed formulas is given implicitly as the
point of evaluation.) This gives us the Nominal-based Internalized Hybrid Logic
Rules NH, shown in Figure 7.

Nominal-based Internalized Hybrid Logic Rules NH

Nl u, v,Γ[wu ] −→ ∆[wu ] ⇒ u, v,Γ[wv ] −→ ∆[wv ].

∼l Γ −→ ∆, ϕ ⇒ ∼ϕ,Γ −→ ∆

∼r ϕ,Γ −→ ∆ ⇒ Γ −→ ∆,∼ϕ
∨l ϕ,Γ −→ ∆; ψ,Γ −→ ∆ ⇒ (ϕ ∨ ψ),Γ −→ ∆

∨r Γ −→ ∆, ϕ, ψ ⇒ Γ −→ ∆, (ϕ ∨ ψ)

∃l ϕ[xv ],Γ −→ ∆ ⇒ ∃xϕ,Γ −→ ∆ if v does not occur in ϕ,Γ,∆.

∃r Γ −→ ∆, ϕ[xv ] ⇒ Γ −→ ∆,∃xϕ
♦l @vϕ,Γ −→ ∆ ⇒ ♦ϕ,Γ −→ ∆ if v does not occur in ϕ,Γ,∆.

♦r Γ −→ ∆,@vϕ ⇒ Γ −→ ∆,♦ϕ

♦rl ♦rv,@vϕ,Γ −→ ∆ ⇒ ♦rϕ,Γ −→ ∆ if v does not occur in ϕ,Γ,∆.

♦rr Γ −→ ∆,@vϕ; Γ −→ ∆,♦rv ⇒ Γ −→ ∆,♦rϕ

N↓l u, ϕ[xu],Γ −→ ∆ ⇒ u, ↓x ϕ,Γ −→ ∆

N↓r u,Γ −→ ∆, ϕ[xu] ⇒ u,Γ −→ ∆, ↓x ϕ

Figure 7: Nominal-based Internalized Hybrid Logic Rules NH

After conversion several of the rules become redundant. The result of converting @r

is just a special case of I, and the @@ rules become entirely trivial. These have been
omitted from the above table.

Many of the rules in NH are very familiar. The operators of classical logic involve
no hybrid interaction and so have returned to a familiar form. Interestingly, the rules
for the modal operators use both nominals and the @ operator.

Theorem 14 A sequent of H is valid if and only if it is a theorem of S(N +NH).

Proof We show that any proof in S(N + NH) can be converted into a proof in
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S(@H +N) and vice versa. The theorem follows from Lemma 13. Each rule

R @uΓ1,Γ −→ ∆,@u∆1 ⇒ @uΓ2,Γ′ −→ ∆′,@u∆2

of @H is first converted into the rule

NR u,Γ1,Γ −→ ∆,∆1 ⇒ u,Γ2,Γ′ −→ ∆′,∆2

Wherever NR occurs in a proof, it can be replaced by the following derivation from
S(@H +N):

u,Γ1,Γ −→ ∆,∆1 ∨@l
∨@r

u,@uΓ1,@uΓ −→ @u∆,@u∆1

term
@uΓ1,@uΓ −→ @u∆,@u∆1

R
@uΓ2,@uΓ′ −→ @u∆′,@u∆2

W
u,@uΓ2,@uΓ′ −→ @u∆′,@u∆2 ∧@l

∧@r

u,Γ2,Γ
′ −→ ∆′,∆2

(The step using R is okay because for all the rules in S@H, the prefixing of @u to
the Γ,∆ and Γ′,∆′ does not alter the applicability of the rule.) Similarly, wherever
R occurs in a proof, it can be replaced by the following derivation from S(NH +N),
with v new to the proof:

@uΓ1,Γ −→ ∆,@u∆1

W,∨@l,∨@r

v,@uΓ1,@vΓ −→ @v∆,@u∆1

term
@uΓ1,@vΓ −→ @v∆,@u∆1

W,∧@l,∧@r

u,Γ1,@vΓ −→ @v∆,∆1

NR
u,Γ2,@vΓ −→ @v∆,∆2 ∨@l

∨@r

u,@uΓ2,@vΓ −→ @v∆,@u∆2

term
@uΓ2,@vΓ −→ @v∆,@u∆2

W,∧@l,∧@r

v,@uΓ2,Γ −→ ∆,@u∆2

name
@uΓ2,Γ −→ ∆,@u∆2

(Again, the application of NR is okay because these rules are similarly immune to
prefixing the Γ,∆ part.) Finally, in the case that u does not occur in Γ,∆ we need
to show that Γ −→ ∆ can be derived from u,Γ −→ ∆ and vice versa. But this is just
W in one direction and name in the other.

The price of implementing our policy of Rules for All is that the calculus no longer
enjoys the Subformula Property. A proof may contain any number of @-prefixes
not in the end sequent, introduced using the ∧@ rules. Of course, we know that
excessive introduction of prefixes is unnecessary, and from the proofs of Lemma 13
and Theorem 14 we see that only one layer of prefixes is ever needed.

The internalization strategy, illustrated here for hybrid logics, can be applied to a
wide range of logical operators. Any first-order definable operator can be tackled in
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this way, although it is presently unclear to me how far one can go in any given case.
For a candidate operator with a first-order definition, it is easy to find rules using the
technique shown on page 10. Yet this process is not entirely automated. There is still
a little ‘tidying up’ to be done, and further work showing that Cut can be eliminated.
Some problems arise with operators having nested quantifiers because of the need to
keep track of dependant variables, but the limits of the method have not yet been
established.

For hybrid logics, full internalization is possible only because of the expressive
power of the language, specifically the fine control exercised by @ and the nominals.
For @-less fragments and other modal logics, there may be no way of duplicating the
function of the metalogical : within the object language. In that case, the internal-
ization strategy will halt, awaiting a more specific analysis of the structure of proofs,
from which it may be possible to guess restrictions of the kind used in the sequent
calculi for S4 and intuitionistic logic. Outside the realm of normal model logics and
their hybrid extensions, the boundaries are even less clear. Some preliminary success
has been achieved using internalization to construct a Tableaux system for S1 based
on its neighbourhood semantics (see[9]).
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