Modal Logic with Bounded Quantification over
Worlds

Rogier M. van Eijk! Frank S. de Boer!
Wiebe van der Hoek!?3
John-Jules Ch. Meyer?

nstitute of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
Email: {rogier,frankb,wiebe,jj}@cs.uu.nl
2Department of Philosophy, Utrecht University
The Netherlands
3Department of Computer Science, University of Liverpool
United Kingdom

Abstract

In this paper!, we present a logical framework that combines modality with a first-order
variable-binding mechanism. The logic, which belongs to the family of hybrid languages,
differs from standard first-order modal logics in that quantification is not performed inside
the worlds of a model, but the worlds in the model themselves constitute the domain of
quantification. The locality principle of modal logic is preserved via the condition that in
each world, the domain of quantification is given by a subset of the entire set of worlds in the
model. In comparison with standard hybrid languages, the logic covers separate mechanisms
for navigation and for variable-binding and formalizes reasoning about the worlds of a model
in terms of equational logic. We show that the logic is semantically characterized by a
generalization of classical bisimulation, called history-based bisimulation, and study the
application of the logic to describe and reason about network topologies.

Keywords: modal logics, equational logic, bounded quantification over worlds,
history-based bisimulation, network topologies, hybrid languages.

1 Introduction

In order to increase the expressiveness of modal logics, during the last decades, a new
family of logics has been introduced that combine modal operators with first-order
variable-binding mechanisms. Characteristic of these logics, which are referred to
as the family of hybrid languages [4], is that quantification is not performed inside

I This paper is a revised version of [6].

the worlds of a model like in standard first order modal logic [7], but instead, the
worlds themselves constitute the domain of quantification. In particular, standard
hybrid languages, which have originally been developed to increase the expressiveness
of tense logics [5], extend modal logic with a collection of nominals that are used to
label the worlds of a model. These nominals are propositional formulas that are true
at exactly one world, and as such are employed as global, unique names for worlds.
Further extensions cover operators to quantify over the worlds in a model, to bind
variables to the current world, to jump to worlds denoted by a particular nominal or
variable, and operators that combine modal, binding and jumping aspects. In this
paper, we present a logical framework that belongs to this family of hybrid languages,
which, due to its different starting-point and underpinning motivations provides a new
perspective on hybrid languages.

The starting point of the framework is an explicit separation between the mecha-
nisms of navigation and variable-binding. That is, in a particular world of a model,
we distinguish between the worlds that are directly accessible from it and the worlds
over which can be quantified. This starting point yields a general framework that can
be instantiated in different ways. The framework for instance allows a global domain
of quantification, but in particular, also bounded forms of quantification where in
each world of a model, there is a restricted domain over which is quantified, like for
instance the set of worlds that are directly accessible or the worlds that are accessible
by following a finite number of successive links. Additionally, in comparison with
standard hybrid languages, the logic is tailored to reason about the worlds of a model
in terms of equational logic.

The paper is organized as follows. In Section 2, we motivate our research in
extensions of modal logics by considering network topologies and argue that existing
logics such as basic modal logic and graded modal logic are not suited to reason about
network topologies. In Section 3, we present the syntax and semantics of our logical
framework. Subsequently, in Section 4, we establish a semantic characterization of
the logic, which is based on a generalization of the classical notion of bisimulation
equivalence. Instead of relating worlds, this new type of bisimulation relates tuples
that are comprised of a world together with a sequence of worlds. These additional
sequences are employed to represent variable bindings that are generated during the
evaluation of formulas. In Section 5, we consider the relation of the framework with
the more standard hybrid languages and describe several interesting extensions of the
framework that form the subject of future research.

2 Network Topologies

An important application of the logical framework presented in this paper is the
description of network topologies. Formally, such a network topology is represented
by a directed graph whose nodes denote the agents in the system and whose edges
make up the accessibility relation, describing what agents know about each other.

Definition 1 A network topology is a tuple of the form:

N = (W,R),

where W is a set of agents and R C W x W denotes the accessibility relation on W.
We use the notation R(w) to denote the set {u € W | R(w,u)} of agents that are
known by the agent w.

Seen from a logical point of view, these network topologies constitute Kripke models
(without a valuation function) that are employed in the semantics of modal logic [11].
This observation naturally leads to a description of network topologies by means of
modal logic.

The basic modal language is defined as follows.

Definition 2 Formulas ¢ in the basic modal language Ly are generated using the
following BNF-grammar:

pu=true | p1 A | Do | Op.

Furthermore, we assume the usual abbreviations false for —true, p1 V 2 for =(—p1 A
—p2), 1 — 2 for =1 V p2 and @1 < @2 for p1 — Y2 A2 — 1.

A modal formula is either equal to true, the conjunction of two modal formulas, the
negation of a modal formula, or the operator ¢ applied to a modal formula. It is
the operator & that gives the language the modal flavor; it has various readings like
for instance the interpretation of expressing possibility. The dual O of this operator,
which is defined as =0, can be thought of as denoting necessity.

The interpretation of modal formulas is given in the following truth definition.

Definition 3 Given a network topology N = (W, R), a world w € W and a formula
© € Lo, the truth definition N',w = ¢ is given by:

N, w [true

NwEepiAps & NwlE e and N w = ¢
N,w k= —p & NuwlEgp

N,w = Cp & N,v [¢ for some v € R(w)

For instance, N, w |= OO true expresses that in the network topology N, all acquain-
tances of the agent w are acquainted to an agent.

Figure 1: Two bisimilar network topologies

The language Lg is however not expressive enough to describe and reason about net-
work topologies. Consider for instance the network topologies in Figure 1, which from
a local perspective denote distinct situations. That is, a logic for network topologies
should be able to distinguish between the situation that an agent’s circle of acquain-
tances is comprised of two agents and the situation that this circle consists of only
one agent. However, the basic language Ly lacks the expressive power to distinguish
between both network topologies; i.e., there does not exist a formula that is true in
the left network and not in the right one. Formally, this follows from the fact that
these networks are bisimilar.

Extensions of the basic modal language that deal with numbers of successors are
the graded modal languages [10]. Rather than one modal operator < the graded
language contains a set {<&,, | n > 0} of operators. A formula of the form <,
expresses that there exist more than n accessible worlds in which ¢ holds. Hence,
graded modal logic distinguishes between the network topologies in Figure 1. For
instance, the formula <;true is true for the agent in the left network but not for the
agent in the right one.

Graded modal languages are still not suitable to describe network topologies. For
instance, consider the two networks in Figure 2, which denote a loop and its infinite
unfolding, respectively. The left network topology consists of an agent that knows
only of itself, while in the second network there is an infinite chain of agents that
know of each other. Since it can be shown that graded modal logic does not possess
the expressive power to distinguish between these bisimilar networks, this logic is also
not adequate to reason about network topologies.

3 Bounded Quantification over Worlds

Our analysis of the reason why basic modal logic and its extension with graded modal-
ities are not fit to reason about network topologies, is that they lack a mechanism for
dealing with world identities.

Figure 2: Loop and its infinite unfolding

For instance, if we would be able to compare the identities of the accessible worlds in
Figure 1, and to compare the identity of the current world with that of its successor
world in Figure 2, then we would be able to distinguish between these network topolo-
gies. This observation naturally leads to an extension of the basic modal logic with a
collection of variables to denote the worlds of a model together with an operator to
bind them.

Definition 4 Given a set Var of variables, terms ¢ and formulas ¢ of the eztended
modal language L1 are generated using the following BNF-grammar:

t o= self | x
p u= (ti=t2) | g1 A2 | ~p | Op | Fx(p),

where x ranges over the variables of Var.

We assume the usual abbreviation Vaxp for —3x—p. The formula true can be
represented by the formula self = self. A formula ¢ is called a sentence if it contains
no free variables, i.e., all variables = in ¢ occur in the scope of a quantifier Jx.

Terms of the language £q are variables denoting worlds and a special constant self
denoting the current world. An atomic formula is of the form ¢; = to, expressing that
terms t; and ¢ denote the same world. We omit propositional variables here since

their treatment is standard and orthogonal to the other logical operators. Addition-
ally, the operator 3z binds the variable x to some world in the domain of quantification
of the current world.

We define the following general models for the extended modal language.

Definition 5 A (generalized) Kripke model for £, is a tuple of the form:
M = (W, R, D),

where W is the set of worlds, R C W x W denotes the accessibility relation on W
and D C W x W defines the domains of quantification. We write D(w) to denote the
domain of quantification {u € W | D(w,u)} of the world w.

In addition to an accessibility relation R, a model contains a relation D that defines for
each world the set of worlds over which can be quantified. There are various possible
instantiations of this domain relation D, like for instance {(w,w) | w € W}, which
only allows variables to be bound to the current world, and the universal relation
{(w1,w2) | w1, ws € W} which enables the binding of variables to any world in the
model.

In particular, in the case of network topologies, we would like to be able to quantify
over precisely the agents that are known. In other words, we assume that network
topologies are Kripke models in which the domain relation coincides with the acces-
sibility relation, that is, R = D.

Still, there are other possible instantiations. As a final example we mention a
domain relation that is given by the transitive closure of the accessibility relation. In
this case we are able to quantify over all worlds that are accessible by following one
or more links.

Before we define the interpretation of £ in terms of Kripke models, we introduce
some helpful notation.

Definition 6 Given a partial function f : X — Y, we use the notation f(z) = L
to denote that f is not defined for x. Additionally, the domain of f is defined by
dom(f) = {z | f(x) # L}. Tts range is given by ran(f) = {y € Y | existsz €
X with f(z) = y}. Finally, we write f[y/z] to denote the function that behaves like
f except on the input = for which it yields the output y.

The interpretation of terms and formulas in £; is given via the following truth defi-
nition, where we use the notion of an assignment for the interpretation of variables.
Such an assignment is a function s : Var — W of finite domain, which maps variables
to worlds in the set W.

Definition 7 Given a model M = (W, R, D), the interpretation [t].,,s of a term ¢ in
a world w € W under an assignment function s : Var — W is defined by:

[[self]]w,s = w
[[x]]w,s = s(z)

The truth definition M,w, s = ¢ is given by:

M,w,s ': (tl = tg) < [[tl]]w,s = [[tg]]w’s

Mw,sE @i Npas & Myw,s E ¢ and M,w, s |E ¢
M,w, s = - & Myw, s

Mw, s = Cp & M, v, s = ¢ for some v € R(w)

M, w, s = Jzp & M, w, s[v/z] = ¢ for some v € D(w)

Additionally, we have M,w |= ¢ if for all assignments s it holds that M, w,s | ¢.
Finally, we write M |= ¢ if M, w = ¢ holds for all w € W.

Note the difference in the truth definition between the operators & and 3 with respect
to the point of evaluation: in the truth definition of the former operator there is a shift
in perspective, viz. from w to v, whereas in the latter, the point of view w remains
fixed. In other words, 3 quantifies over the current domain while the operator < is
used to change the scope of quantification.

Finally, note that the constant self constitutes a non-rigid designator [7] in the
sense that its denotation differs among the worlds in a model; in particular, in each
world the denotation of this designator is the world itself.

The logic £ distinguishes between the network topologies in Figures 1 and 2. For
instance, the formula 3z3y—(x = y) is true in the left network in Figure 1 but not
in the right one. Secondly, the formula Jz(x = self) distinguishes between the two
networks in Figure 2. An example of a distinguishing formula that does not contain
the constant self, is the formula 32> 3y(y =), which is true in the left network in
Figure 2 but not in the right one.

The general set up of the framework allows us to study the connections between
the accessibility relation and the domains of quantification that the language £; can
express. We consider the property that the domain relation is a contained in the
accessibility relation.

Observation 8 For all models M = (W, R, D) and worlds w € W the following
holds:
M, w = Vo (r = self) iff D(w) C R(w).

In Corollary 18 below, we prove that there does not exist a formula that expresses
R(w) € D(w), for all w. However, a straightforward refinement of the language is
its extension with the inverse operator of ¢, denoted by <&~!, which has a natu-
ral interpretation in the context of network topologies: It denotes the is-known-by
relation.

Definition 9 The interpretation of the inverse navigation operator ¢!, is defined
by:
M,w, s = O o & M, v, s |= ¢ for some v with w € D(v).

With this extra operator, we obtain the following result.

Observation 10 Given a model M = (W, R, D) with a reflexive domain relation D,
for all worlds w € W, we have R(w) C D(w) if and only if:

M, w = Jx(x = self AOBy(y = self AO™(x = self A3z(z =1))))).

As mentioned before, network topologies are Kripke models in which the domain
relation coincides with the accessibility relation. Let us consider some properties of
network topologies we can express using the language £;.

Example 11 (Network Topologies) First of all, the formula
FxO(x = self)
can be thought of expressing “knowing yourself.” Secondly, the formula
Jx(z = self A OOz = self)

is true in a world in case all accessible worlds have in turn access to this world. In
other words, it expresses “everyone that I know, knows me.” Additionally, the formula

Jry(—(z = y) A O(x = self A =Oy = self) A Oy = self A —=Ox = self))

is true in a particular world, in case there are two distinct accessible worlds that are
not accessible to one another. Informally, it can be thought of as expressing “I know
two agents that do not know each other.”
Finally, we illustrate that quantification does not commute with modality. Con-
sider the formula
FxO(x = self),

which is true in a world in case there is exactly one accessible world, and which can be
thought of expressing “I know of exactly one agent.” On the other hand, the formula

O3z (z = self)
expresses something different, namely that “everyone that I know, knows itself.”

In the remainder of this section, we consider the finite model property and the decid-
ability of the logic.

Lemma 12 The language £; does not satisfy the finite model property.

Proof We show that £; can enforce infinite domains. Let P(x,y) stand for the
following formula:
Oz = self A Oy = self),

which expresses that the world z is accessible from the current world, and from z the
world y is accessible. Let ¢ denote the conjunction of the following formulas Jz(true),
which reflects a nonempty domain, Vz(—P(z,z)) expressing the irreflexivity of the
relation P, the formula VaVyVz((P(x,y) A P(y,z)) — P(z,2)) denoting transitivity,
and Va3y(P(z,y)) expressing seriality. It is not difficult to see that if this formula
is true in a particular world then its domain of quantification must be infinite (see
Figure 3).

Figure 3: Construction of an infinite domain

In the above proof, the use of the constant self is not essential. The language £
without this constant does not satisfy the finite model property either. This can be
shown in a similar manner using the following definition of the formula P(x,y):

O(Fu(u = z) A OJu(u = y)).

Thus, P(z,y) expresses that y is in the domain of a world that can be accessed from
some accessible world (with respect to the current world) that has « in its domain.

The crux in the proof of Lemma 12 is the construction of an infinite domain of
quantification. It is still an open issue for future research whether £; satisfies the
finite model property in case we restrict to Kripke models in which the domains of
quantification are finite.

In [2], it is shown that the hybrid language consisting of the basic modal language
extended with variables and an operator | to bind the variable x to the current
world, has an undecidable validity problem. Since a formula | z(¢) can be modeled
by Jz(x = self A) in our language, we derive that the language £; is undecidable.
This also implies that the language £; is not part of the guarded fragment of first-order
logic [1], since this fragment has a decidable validity problem.

Moreover, an interesting question arises with respect to the role of the constant
self in this result. The language £, without this constant self is also not part of
the guarded fragment of first-order logic. Yet it is an open issue for future research
whether the validity problem of this sublanguage of £, is decidable.

4 Semantic Characterization

In this section, we study the expressiveness of the language £;. In particular, we
address the issue of what properties the language can express and what properties
are beyond its expressive power. The central result is a semantic characterization
of the language, which defines the conditions under which two Kripke models satisfy
precisely the same formulas of £;.

For the basic modal language Ly the semantic characterization is given by the
notion of a bisimulation [3, 9]. That is, two models satisfy the same basic modal
formulas if and only if they are bisimilar. In this paper, we introduce a new notion of
bisimulation, called history-based bisimulation, which extends classical bisimulation
with a mechanism to handle quantifications. Instead of relating worlds, this new type
of bisimulation relates tuples that are comprised of a world together with a injective
sequence of worlds. These additional sequences are employed to represent variable
bindings that are generated during the evaluation of formulas.

Let us first introduce some helpful notation with respect to injective sequences.

Definition 13 Given a set of worlds W an injective sequence over W, or sequence for

short, is a function @ : IN — W of finite domain, which satisfies for all 4, j € dom(?):
(i) =0(j) = i=17.

Additionally, ¢ denotes the empty sequence; that is, (i) = L for all 4 € IN.
Finally, we define:

ﬁ.w{ g[w/i] if w & ran(v)

otherwise,

where i € IN is the next index not part of dom(v). Thus, ¥ e w denotes the extension
of the sequence v with w in case w does not already occur in v, and denotes v itself,
otherwise.

An injective sequences ¥ : IN — W is an abstraction of an assignment s : Var — W
that just contains the information that is needed in the semantic characterization.
That is, an assignment s is represented by a sequence that consists of the elements in
the range of s in some particular order. This representation thus abstracts from any
repetitions of worlds and the particular variable names. From a computational point
of view, the advantage of sequences in comparison with assignments is that they give
rise to a decidable semantic characterization (see Observation 15).

Next, we introduce the notion of a history-based bisimulation.

Definition 14 Given the models M; = (Wi, Ry, D1) and My = (Wa, Ry, Ds), a
non-empty relation ~ is a history-based bisimulation, if (wy,01) ~ (ws,) implies
the following:

(self) wy = v1(7) iff we = v2(4), for all i € IV,
(bisim) if u; € Ry(w1) then there exists us € Ro(we) with (ug,v1) ~ (uz, v2),
(var) if u; € Dq(w;) then there exists ug € Da(we) with (wq, 77 @ uy) ~ (ws, U2 ® us)

and conditions similar to (bisim) and (var) from My to M;.
Additionally, we define w; ~ wsy to hold in case (w1, €) ~ (wa,€).

The reason why the notion of bisimulation is called history-based is that the injective
sequences record the worlds in the domains of the encountered worlds that have
been bound by a particular variable. We could say that they make up a history of
landmarks: if during navigation we arrive at a world that has such a landmark in its
domain, then in the other model, we should be at a world that has the corresponding
landmark in its domain.

It is worth remarking here that the notion of a history-based bisimulation is quite
different from the notion of a history-preserving bisimulation [8]. The latter is a very
strong notion saying that two worlds are history-preserving bisimilar in case they are
related by a bisimulation and additionally, the respective submodels consisting of the
worlds that can reach the world via the accessibility relation, are isomorphic.

If we restrict ourselves to models with a finite number of worlds, the notion of a
history-based bisimulation is decidable.

Observation 15 Given models M; and My with a finite number of worlds, for all
worlds wy in M7 and ws in Mas, it is decidable whether there exists a history-based
bisimulation ~ such that w; ~ ws.

Note that it is crucial here that injective sequences do not contain repetitions of
worlds. This implies that there exists a bound on the number of applications of rule
(var) that we need to consider.

Before we phrase the semantic characterization of the language £; in Theorem 17,
we define the notion of an image-finite world.

Definition 16 Given a model M = (W, R, D), a world w € W is called image-finite
if R(v) and D(v) are finite for all v with (w,v) € R*, where R* denotes the reflexive,
transitive closure of R.

Properly, we do not need the assumption of image-finiteness, as analogous to the
proof of the semantic characterization of standard modal logic, we could use ultrafilter
extensions [3]. However, for the sake of simplicity we adopt this property here.

Theorem 17 (Semantic characterisation) Given two models M; and Ms, for
all worlds wy from M; and ws from Ms the following hold:

(7) if wy ~ wq for some history-based bisimulation ~ then for all sentences ¢ € L4
we have M1, w1 E ¢ & Mo, wa E @

(74) if wy and we are image-finite and Mj, w1 | ¢ & Mo, we = ¢ for all sentences
@ € L9, then wy ~ ws for some history-based bisimulation ~.

The proof of the semantic characterization is given in the appendix. Let us consider
some applications of the result.

Figure 4: A confluent and non-confluent model
First of all, consider the confluent model and the non-confluent model in Figure 4. In

case their domain relations are equal to the accessibility relations, these two models
are related by a history-based bisimulation, implying that the language £; cannot
distinguish between them. However, note that in case their domain relations are
equal to the transitive closure of the accessibility relations, the formula Jx00(z =
self), which is true in the left network but not in the right one, is an example of a
distinguishing formula.

Secondly, the language £, cannot express the property that the accessibility rela-
tion is contained in the domain relation, as stated in the following result.

Corollary 18 There does not exist a formula ¢ € £; such that for all models M =
(W, R, D) and worlds w € W we have: M, w |= ¢ iff R(w) C D(w).

Proof Consider the model M = (W, R, D) and a state w € W such that

e W is an infinite set of worlds,
e R satisfies (w,v) € R for all v € W,
e D satisfies (w,v) € D for all v € W.

10

Additionally, we have a model M* that extends M with a world x defined by:
M* = (WU {x}, RU{(w,*)}, D).

These two models are related by the following history-based bisimulation ~. For all
u € W, sequences ¢ over W and v’ € W \ ran(v):

~

) o~

~

)
)

Note that such a world u’ exists since ran(¥) is finite while the set W is infinite.
Consequently, by Theorem 17 we obtain that the language £; cannot distinguish
between these two models, and as R(w) C D(w) and R(w) U {(w,*)} € D(w), we
derive the desired result.

(u,v
(',

4]
SRS

5 Related Work and Future Research

Our framework is closely connected to the work on hybrid languages, which also
combine modality with first-order variable-binding mechanisms [4]. In particular,
hybrid languages extend the basic modal language Ly with a collection of nominals
that are used to label worlds in a model. These nominals are propositional formulas
that are true at exactly one world in a model, and so to speak are employed as global
unique names for worlds. Further extensions additionally incorporate operators of the
form @, to jump to the world that is denoted by the term ¢, as well as operators to
bind variables; e.g., the operator | z to bind the variable x to the current world and
the existential quantifier, which we denote as 3z to distinguish it from the quantifier
Jx from L1, which quantifies over all worlds of a model.

First of all, the operator | to bind the variable z to the current world can be
represented in the language £; as follows:

lz(p) & Fz(xz = self Ap).

The operator corresponds to existential quantification in the class of models in which
for each world the domain of quantification consists of only the world itself; that is,
in the class:

{M | M = Jz(x = self ANVy(y = x))}.

Additionally, the hybrid quantifier 3z ranges over the entire set of worlds in a model.
In our framework this operator corresponds with existential quantification in the class
of models in which the domain of quantification of each world coincides with the entire
set of worlds.

Finally, we mention the hybrid operator @; that is used to jump to the world
denoted by the term ¢. The truth definition of this operator can be given as follows:

Mow, s |EQp < M,v,s =@, where v = [t]y,s-

This operator has no counterpart in our framework due to the fact that in each world,
it allows moving to worlds that are not necessarily reachable via the accessibility

11

relation. This is in contrast with one of our underlying assumptions that in a world
one cannot move to arbitrary worlds but only to those worlds which are accessible.

Let us consider the major differences between our framework and the hybrid lan-
guages as described above. First of all, an important characteristic of the hybrid
languages is the treatment of terms as formulas. That is, analogous to formulas, a
term can be true or false at a world of a model: It is true if its denotation is exactly
the current world and is false otherwise. In contrast, our logic is based on a more
conventional ontology which distinguishes between terms and formulas; i.e., a term
denotes a world and a formula a Boolean value. Consequently, our framework for-
malizes reasoning about the identities of the worlds of a model directly in terms of
equational logic.

A second difference with the hybrid languages, is our separation of navigation and
variable-binding mechanisms; that is, in our framework, there is one operation for
navigating a model and another operation for bounded quantification over worlds.
This treatment allows us to study these different mechanisms in isolation as well as
to examine their interactions. In contrast, hybrid languages cover operators, such as
the operators |z and Xz in [4], that embody both navigation and binding aspects.

Thirdly, in the hybrid languages, the interpretation of nominals is absolute, which
means that each of these constants denotes a unique world in the model. In contrast,
our framework allows natural extensions with relative constants, which are constants
whose interpretation depends on the current world. Such an extension can be used
when reasoning about the ambiguities of names in, for example, multi-agent topolo-
gies; that is, situations in which one agent is known by other agents under different
names. Formally, we may extend our language £, with a countable set C' of names,
with typical element c. A term ¢ in the extended language, which is called Lo, is thus
either a variable z, the constant self, or a name ¢ € C'. Formulas are defined as in
Definition 4 and they are interpreted over the following models:

(W,R,D,I),

where W is a set of worlds, R C W x W denotes the accessibility relation, and I is
a total function which assigns to each w € W an interpretation I(w) of each name
¢ € C, that is, I(w) € C — W. Furthermore, D = {{w, I(w)(c)) | ¢ € C}. In other
words, for each world the domain of quantification is given by the local denotations
of the constants.

The definition of the truth of a formula ¢ in the extended language Lo involves
a straightforward adaptation of the truth definition of the language £; and is there-
fore omitted. Instead, we explain here the use of quantification in the description of
the ambiguities to which names may give rise. First, we observe that without quan-
tification we cannot describe phenomena like that one agent is known by different
agents under different names. For example, given an agent w, we cannot describe the
situation that I'(w)(c) = I(w')(c), for some (w,w’) € R, simply because the modal
operators induce a “context switch,” that is, a different interpretation of the names.
However this situation can be described using quantifiers simply by the formula:

Jz(x =c A Oz = ¢)).
So, we bind the value of the constant ¢ to the variable z, and use the fact that the

interpretation of the variables is fixed, that is, does not change when “moving” from

12

one agent to another. This example illustrates the difference with the variable-binding
mechanism of first-order logic: in first-order logic, the formula 3x(z =t A ¢) can be
modeled by the substitution @[t/x] of ¢ for = in ¢.

Another example of a further extension of our framework concerns a formalization
of reasoning about the identities of objects as they appear during the execution of
an object-oriented program. A constant ¢ € C is interpreted in this application as a
pointer attribute. Object structures can be modeled as Kripke models that contain a
family of deterministic accessibility relations; one for each pointer attribute.

Definition 19 A deterministic (generalized) Kripke model is a pair (W,), where as
above, W is a set of worlds and I € W — (C — W).

The set W represents the set of existing objects and I describes the pointer structure.
These models support the following natural multi-modal extension L3 of our basic
logic, where each pointer attribute is also used as a modal operator:

o u= (ti=t2) | ~¢p | p1 V2 | (& | Fz(p)

Given a model M = (W,), an object w € W and an assignment function s : Var —
W, we define the interpretation of constants by:

Additionally, the truth definition is given by:
Miw,s = {c)p & M,v,s = ¢, where v =I(w)(c).

The component [in (W, I) thus represents both the accessibility and the domain
relation.

Consider for instance the model M in Figure 5, which consists of four objects
that are arranged in a ring structure. Each object has two pointers left and right to
denote the object on its left and on its right, respectively.

Figure 5: A ring structure

In this model, each object is the left neighbor of its right neighbor:
M = Jx(z = self A (right)(left = x)).
Additionally, we have:

M = 3x(z = right A (left)(left)(left = x)),

13

which expresses that for each object, its right neighbor is the same object as the left
neighbor of the left neighbor of its left neighbor.

We would like to end our discussion with the conclusion that our approach to the
introduction of variable-binding mechanisms into modal logics provides a promising
basis for various interesting extensions and applications.

Appendix: Proof of Theorem 17

First, we introduce the notion of an assignment-based bisimulation, which is almost
similar to the notion of a history-based bisimulation. However, instead of injective
sequences this type of bisimulation makes use of assignments.

Definition 20 Given the models My = (Wy, Ry, D1) and My = (Ws, Ra, D), the
worlds wy € W1 and wy € Wy, the assignments s; : Var — Wiy and so @ Var — Wy,
the non-empty relation ~ is an assignment-based bisimulation if (wi,s1) ~ (w2, s2)
implies the following:

(term) [t1]w,.s1 = [t2]lwi,sy HE [t1]ws,s5 = [t2]ws,ss, for all terms ¢; and to.
(bisim’) if u; € Ry(wy) then there exists us € Ro(ws) with (u1,s1) ~ (uz, s2)

(var’) if u; € Dy(wn) then there is ug € Do(ws) with (w1, s1[uy/x]) ~ (we, sa[us/x]),
for all = & ran(s1) N ran(ssz).

and conditions similar to (bisim’) and (var’) from Mjy to M;.

For assignment-based bisimulations we have the following characterization result.

Lemma 21 Given the models My = (Wi, Ry, Dq) and My = (Wa, Ra, Ds), the
worlds w1 € W7 and wo € Wy, the assignments s; : Var — Wiy and so @ Var — Wa,
we have:

(1) if (wy,81) ~ (wa,ss) for some assignment-based bisimulation ~ then for all
@ € L1 we have: M1, w1,81 E @ & Ma,wa, 80 =

(74) if w; and we are image finite and Mj,wy,$1 | ¢ < Ma,ws, s9 | @ for all
@ € Ly, then (w1, s1) ~ (wa, s9) for some assignment-based bisimulation ~.

Proof (i) This can be shown by induction on the complexity of . We consider the
main case: ¢ is of the form Jz¢. Suppose (w1, s1) ~ (wa, $3) and M, wy, s = Jzi.
Then there exists uy € Dy (wy) such that M, wy, s1[u1/z] = ¢ holds. From condition
(var’) we derive that there exists ug € Dao(wq) with (w1, s1[uy/x]) ~ (we, sa[uz/z]).
Applying the induction hypothesis, we obtain Ma,wa, saus/x] = 1 for some us €
Dy (w2), which yields the desired result Ma, ws, so = Jx1h. The converse implication
can be shown similarly.

(#4) Consider the relation ~ defined by: (wi,s1) ~ (ws,ss2) iff w; and wy are
image finite and Mj,w1,81 | ¢ & Mo, wa, 89 E @ for all formulas ¢ € L;.
We claim that ~ is an assignment-based bisimulation. Suppose this is not the case.
Then there exist image-finite worlds w; and ws and assignments s; and so with
My, wi, 81 E @ & Mo, ws, ss = ¢ for all formulas ¢ € L1, but at least one of the
conditions of assignment-based bisimulations is not satisfied.

14

e First of all suppose (term) is not satisfied. Then without loss of generality, for
some terms ¢; and to we have [t1]w,,s; = [t2]wi,s; DUt [t1]ws,s0 7 [f2]ws,ss- I
other words, M1, w1, s1 = (t1 = t2) and My, wa, s2 & (t1 = t2), which yields a
contradiction.

e Next, we assume that condition (bisim’) is not satisfied. Consider the set
Ro(we) = {uy,...,ur} of worlds that are Rs-accessible from wsy, which is finite
because of the image-finiteness of wy. Suppose that we have a world v € Ry (wy)
such that for all 1 < ¢ < k there exists a formula ¢; € £q with My,v,s1 = ¢;
and Ma,u;,s2 = ;. Let ¢ be the conjunction A;_,, ¢, Then we have
M, w1, 851 E Op while Mo, wa, 55 & Oy, yielding a contradiction. We conclude
that such a world v cannot exist.

e Finally, we suppose that condition (var’) is not met. Consider the set Dy(wq) =
{u1,...,uy}, which is finite by the image finiteness condition. Suppose we have
a world v € Dy(w;) such that for all 1 < i < k there exists a formula ¢; € £
with My, w1, s1[v/z] E ¢; and Mo, we, so[u;/x] & @;. Subsequently, for the
conjunction ¢ = A, ., ¢; we obtain My, w1, s1 = Jrp and Mo, wa, so = Tz,
yielding a contradiction.

Hence, we conclude that ~ is an assignment-based bisimulation.

What remains to be done is the translation of these results to the case of history-based
bisimulations. First, we consider the connection between sequences and assignments.
Recall that we assume sequences to be injective, which means that they do not contain
any repetitions. We define the relation ~, which relates pairs of sequences with the
pairs of assignments they represent.

Definition 22 For all sequences w; and ws and assignments s; and so, we define
(W, Wa) & (81, 82) if and only if the following hold:

(1) ran(sy1) = ran(w;) and ran(sz) = ran(ws)
(17) s1(z) = w1 (4) iff so(x) = wa(i), for all z € Var and ¢ € IN.
We identify the following properties of the relation ~=.

Proposition 23 For all sequences w; and ws, assignments s and s, if (wy,ws) ~
(s1, $2) then:

(1) si(z) = s1(y) < sa2(x) = s2(y), for all x,y € Var
(1) (w1 e uy,ws @ uz) = (s1[u1/x], sa[uz/z)), for all x & dom(sy) N dom(sz).

The following result establishes how to construct history-based bisimulations from
assignment-based bisimulations and vice versa.

Lemma 24

(i) If ~ is an assignment-based bisimulation then the following relation ~j, is a
history-based bisimulation:

(w1,01) ~p (wa,v2) iff (wy,s1) ~ (we, s2) for some s1, so with (U7, 02) = (s1, s2)

15

(i4) If ~is a history-based bisimulation then the following relation ~, is an assignment-
based bisimulation:

(’U)l,Sl) ~a (U}Q,SQ) lﬂ. (wl,v_l) ~ (’wg,'l}_g) fOI‘ some ’U_17U_2 Wlth (’0_1,'[)_2) ~ (81,82)

Proof (i) Suppose (w1,v1) ~p (wa,02), where ~ is an assignment-based bisim-
ulation. By definition there exist assignments s1,s2 with (v7,02) &~ (s1,$2) and
(w1, 81) ~ (wa,s2). We have to prove that all conditions for history-based bisim-
ulations are satisfied.

(self) If we take the constant self for ¢; and a variable x for ¢5 in (term) we derive
w1 = $1(x) & we = sa(x), for all z. From the fact (v1,02) = (s1, s2) we derive
wy = 01(1) & wy = U2(i) for all 4 € IN, which was to be shown.

(bisim) This condition follows immediately from (bisim’).

(var) Consider a state u; € Dy(w). By condition (var’) there exists ug € Da(ws)
with (wyq, $1[u1/z]) ~ (wa, safus/x]), for all x & ran(sy) Nran(sz). Additionally,
from (v1,02) = (s1, $2) we derive via Proposition 23(i¢) that (07 @ uy, 02 @ ug) ~
(s1[u1/x], s2[uz/x]) holds. Consequently, we have (wy, 01 ® u1) ~p (w2, U2 ® uz),
which was to be shown.

(#4) Suppose (w1, s1) ~q (w2, s2), where ~ is a history-based bisimulation. By defini-
tion there exist 07 and vy with (07, 02) = (s1,2) and (w1, v71) ~ (we,v2). We have to
prove that all conditions for assignment-based bisimulations are satisfied.

(term) First, condition (self) gives wy = 07 (i) < wq = va(7) for all i. From the fact
(01,702) = (81, 82) we derive wy = s1(x) & wae = sa(x), for all z € Var. Secondly,
Proposition 23(i) yields s1(z) = s1(y) & s2(x) = sa2(y), for all x,y € Var.
Together these two facts yield [t1]w,,s; = [t2]wr,s1 U [E1]ws.s0 = [t2]uws,ss, for
all terms ¢; and ts.

(bisim’) This condition follows immediately from (bisim).

(var’) Consider a state u; € D;(w;). By condition (var) there exists ug € Da(ws)
with (wy, 07 eu1) ~ (wse, vz eus). Additionally, from (v7,v2) &~ (s1, s2) we derive
via Proposition 23(ii) that (v7 uy, vz ® ug) =~ (s1[u1/x], sa[uz/x]) holds for all
x & ran(sy) N ran(sz). Consequently, we have (wi, s1[u1/z]) ~ (wa, saus/x])
for all x & ran(sy1) N ran(sz), which was to be shown.

Finally, we are in position to put all pieces together.

Proof of Theorem 17

(#) Suppose w; ~ wy for some history-based bisimulation ~, which means (wy,€) ~
(w2, €). Then according to Lemma 24 we have (w1, s) ~, (wa, s) for the assignment-
based bisimulation ~,, where s is defined by s(x) = L for all z € Var. Then
Lemma 21 yields that for all formulas ¢ € £ we have My, w1, s | ¢ & My, wa, s =
. Consequently, for all sentences ¢ € L1 we derive My, w; | ¢ & My, wa = .

(i) Suppose w; and we are image finite and M, w1 | ¢ & M, we | ¢, for all

16

sentences ¢ € L3. Since we restrict to sentences we also have My, w1, s)z Y <
My, wa, s = p for all ¢ € L1, where s is defined by s(z) = L for all z € Var. By
Lemma 21 we have (w1, 8) ~ (ws, s) for some history-based bisimulation ~. Lemma 24
then establishes (w1, €) ~p, (wa,€), for the history-based bisimulation ~,, and thus
we conclude wy ~p ws.

Acknowledgments

The authors wish to thank the anonymous referees for their suggestions and com-
ments.

References

1]

2]

[9]

[10]

[11]

H. Andréka, J. van Benthem, and I. Németi. Modal logics and bounded fragments
of predicate logic. Journal of Philosophical Logic, 27(3):217-274, 1999.

C. Areces, P. Blackburn, and M. Marx. A road-map on the complexity of hybrid
logics. In J. Flum and M. Rodriguez-Artalejo, editors, Computer Science Logic,
Proceedings of CSL’99, volume 1683 of Lecture Notes in Computer Science, pages
307-321. Springer-Verlag, Heidelberg, 1999.

J.F.A.K van Benthem. Modal Logic and Classical Logic. Bibliopolis, Naples,
1983.

P. Blackburn and J. Seligman. Hybrid languages. Journal of Logic, Language
and Information, 4:251-272, 1995.

R. Bull. An approach to tense logic. Theoria, 36:282-306, 1970.

R.M. van Eijk, F.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. A modal
logic for network topologies. In M. Ojeda-Aciego, I.P. de Guzman, G. Brewka,
and L.M. Pereira, editors, Proceedings of the 7th European Workshop on Logics
in Artificial Inteligence (JELIA 2000), volume 1919 of Lecture Notes in Artificial
Intelligence, pages 269-283. Springer-Verlag, Heidelberg, 2000.

M. Fitting and R.L. Mendelsohn. First-Order Modal Logic. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1998.

U. Goltz, R. Kuiper, and W. Penczek. Propositional temporal logics and equiv-
alences. In Proceedings of Concur’92, volume 630 of Lecture Notes in Computer
Science, pages 222-236, Berlin, 1992. Springer-Verlag.

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of Association of Computer Machinery, 32:137-162, 1985.

W. van der Hoek. On the semantics of graded modalities. Journal of Applied
Non Classical Logics, 2(1):81-123, 1992.

G.E. Hughes and M.J. Cresswell. An Introduction to Modal Logic. Methuen and
Co. Ltd, London, 1968.

17

